40
Views
0
CrossRef citations to date
0
Altmetric
Review

Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis

, , &
Received 12 Mar 2024, Accepted 05 Jun 2024, Published online: 11 Jun 2024

References

  • Niederman MS, Baron RM, Bouadma L, et al. Initial antimicrobial management of sepsis. Crit Care. 2021 Aug 26;251(1):307. doi: 10.1186/s13054-021-03736-w
  • Hawiger J, Musser JM. How to approach genome wars in sepsis? Crit Care. 2011;156(6):1007. doi: 10.1186/cc10482
  • Shi Y, Ji S, Xu Y, et al. Global trends in research on endothelial cells and sepsis between 2002 and 2022: a systematic bibliometric analysis. Heliyon. 2024 Jan 15;10(1):e23599. doi: 10.1016/j.heliyon.2023.e23599
  • Pate M, Damarla V, Chi DS, et al. Endothelial cell biology: role in the inflammatory response. Adv Clin Chem. 2010;52:109–130
  • Wang M, Feng J, Zhou D, et al. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: a new predictive and therapeutic paradigm for sepsis. Eur J Med Res. 2023 Sep 12;281(1):339. doi: 10.1186/s40001-023-01301-5
  • Matsuda N. Alert cell strategy in SIRS-induced vasculitis: sepsis and endothelial cells. J Intensive Care. 2016;4(1):21. doi: 10.1186/s40560-016-0147-2
  • Barichello T, Generoso JS, Singer M, et al. Biomarkers for sepsis: more than just fever and leukocytosis—a narrative review. Crit Care. 2022 Jan 6;261(1):14. doi: 10.1186/s13054-021-03862-5
  • Kruger-Genge A, Blocki A, Franke RP, et al. Vascular endothelial cell biology: an update. Int J Mol Sci. 2019 Sep 7;2018(18):4411. doi: 10.3390/ijms20184411
  • Feng J, Liu L, He Y, et al. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol. 2021 Sep;179(9):991–1001. doi: 10.1080/1744666X.2021.1951233
  • Sullivan RC, Rockstrom MD, Schmidt EP, et al. Endothelial glycocalyx degradation during sepsis: causes and consequences. Matrix Biol Plus. 2021 Dec;12:100094. doi: 10.1016/j.mbplus.2021.100094
  • Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019 Oct 29;20(21):5376. doi: 10.3390/ijms20215376
  • Mameli E, Martello A, Caporali A. Autophagy at the interface of endothelial cell homeostasis and vascular disease. FEBS J. 2022 Jun;28911(11):2976–2991. doi: 10.1111/febs.15873
  • Nova Z, Skovierova H, Calkovska A. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. Int J Mol Sci. 2019 Feb 15;204(4):831. doi: 10.3390/ijms20040831
  • Sun HJ, Wu ZY, Nie XW, et al. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol. 2019;10:1568. doi: 10.3389/fphar.2019.01568
  • Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Rev Histol Histopathol. 2004 Apr;192:535–564.
  • Erickson MA, Shulyatnikova T, Banks WA, et al. Ultrastructural remodeling of the blood–brain barrier and neurovascular unit by lipopolysaccharide-induced neuroinflammation. IJMS. 2023 Jan 13;242(2):1640. doi: 10.3390/ijms24021640
  • Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood. 2022 Mar 31;13913(13):1973–1986. doi: 10.1182/blood.2020007208
  • Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020 Aug 1;2023(3):361–370. doi: 10.1164/rccm.201910-1911TR
  • Baby S, Reljic T, Villalba N, et al. Endothelial glycocalyx-associated molecules as potential serological markers for sepsis-associated encephalopathy: a systematic review and meta-analysis. Plos one. 2023;18(2):e0281941. doi: 10.1371/journal.pone.0281941
  • Zhong L, Simard MJ, Huot J. Endothelial microRnas regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J. 2018 Aug;328:4070–4084. doi: 10.1096/fj.201701536R
  • Iba T, Levi M, Levy JH. Intracellular communication and immunothrombosis in sepsis. J Thromb Haemost. 2022 Nov;20(11):2475–2484. doi: 10.1111/jth.15852
  • Page AV, Liles WC. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence. 2013 Aug 15;4(6):507–516. doi: 10.4161/viru.24530
  • Shi H, Zuo Y, Navaz S, et al. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol. 2022 Jul;74(7):1132–1138. doi:10.1101/2021.01.18.21250041.
  • Nguyen SMT, Rupprecht CP, Haque A, et al. Mechanisms governing anaphylaxis: inflammatory cells, mediators, endothelial gap junctions and beyond. Int J Mol Sci. 2021 Jul 21;2215(15):7785. doi: 10.3390/ijms22157785
  • Fu P, Ramchandran R, Dudek SM, et al. Regulation of vascular endothelial barrier integrity and function by lipid-derived mediators. In: Parinandi N, and Hund T, editors. Cardiovascular signaling in health and disease. Cardiovascular Signal Heal Dis (Springer, Cham) 2022 Sep:445–484. doi: 10.1007/978-3-031-08309-9_17
  • Tyml K. Role of connexins in microvascular dysfunction during inflammation. Can J Physiol Pharmacol. 2011 Jan;891(1):1–12. doi: 10.1139/Y10-099
  • Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf). 2018 Jan;2221(1). doi: 10.1111/apha.12860
  • Vogel SM, Malik AB. Cytoskeletal dynamics and lung fluid balance. Compr Physiol. 2012 Jan;21:449–478.
  • Vandenbroucke E, Mehta D, Minshall R, et al. Regulation of endothelial junctional permeability. Ann N Y Acad Sci. 2008 Mar;1123(1):134–145. doi: 10.1196/annals.1420.016
  • Shao Y, Saredy J, Yang WY, et al. Vascular endothelial cells and innate immunity. Arterioscler Thromb Vasc Biol. 2020 Jun;406:e138–e52.
  • Claser C, Nguee SYT, Balachander A, et al. Lung endothelial cell antigen cross-presentation to CD8(+)T cells drives malaria-associated lung injury. Nat Commun. 2019 Sep 18;10(1):4241. doi: 10.1038/s41467-019-12017-8
  • Janosevic D, Myslinski J, McCarthy TW, et al. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. Elife. 2021 Jan 15;10. doi: 10.7554/eLife.62270
  • Pons S, Arnaud M, Loiselle M, et al. Immune consequences of endothelial cells’ activation and dysfunction during sepsis. Crit Care Clin. 2020 Apr;362(2):401–413. doi: 10.1016/j.ccc.2019.12.001
  • Ito T, Kakuuchi M, Maruyama I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit Care. 2021 Mar 8;251(1):95. doi: 10.1186/s13054-021-03524-6
  • Brooks MB, Turk JR, Guerrero A, et al. Non-lethal endotoxin injection: a rat model of hypercoagulability. PLoS One. 2017;121(1):e0169976. doi: 10.1371/journal.pone.0169976
  • Sanz Codina M, Zeitlinger M. Biomarkers predicting tissue pharmacokinetics of antimicrobials in sepsis: a review. Clin Pharmacokinet. 2022 Feb 25;61(5):593–617. doi: 10.1007/s40262-021-01102-1
  • Jelena Rakocevic DO, Mitrovic-Ajtic O, Tomasevic M, et al. Endothelial cell markers from clinician’s perspective. Experim Mol Path. 2017;102(2):303–313. doi: 10.1016/j.yexmp.2017.02.005
  • Jin K, Luo Z, Zhang B, et al. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018 Jan;8(1):23–33. doi: 10.1016/j.apsb.2017.12.002
  • Osburn WO, Smith K, Yanek L, et al. Markers of endothelial cell activation are associated with the severity of pulmonary disease in COVID-19. PLoS One. 2022;175(5):e0268296. doi: 10.1371/journal.pone.0268296
  • Fernandez S, Palomo M, Molina P, et al. Progressive endothelial cell damage in correlation with sepsis severity. Defibrotide as a contender. J Thromb Haemost. 2021 Aug;198(8):1948–1958. doi: 10.1111/jth.15343
  • Parikh SM. Targeting Tie2 and the host vascular response in sepsis. Sci Transl Med. 2016 Apr 20;8(335):335fs9. doi: 10.1126/scitranslmed.aaf5537
  • Maneta E, Aivalioti E, Tual-Chalot S, et al. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol. 2023;14:1144229. doi: 10.3389/fimmu.2023.1144229
  • Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Sig Transduct Target Ther. 2021 Nov 25;6(1):407. doi: 10.1038/s41392-021-00816-9
  • Moriyama K, Nishida O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int J Mol Sci. 2021 Aug 18;2216(16):8882. doi: 10.3390/ijms22168882
  • Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 2020 Dec;89Pt B:107087. doi: 10.1016/j.intimp.2020.107087
  • Root-Bernstein R. Innate receptor activation patterns involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model making novel predictions and therapeutic suggestions. Int J Mol Sci. 2021 Feb 20;22(4):224. doi: 10.3390/ijms22042108
  • Tomaskova V, Mytnikova A, Hortova Kohoutkova M, et al. Prognostic value of soluble endoglin in patients with septic shock and severe COVID-19. Front Med. 2022;9:972040. doi: 10.3389/fmed.2022.972040
  • Atreya MR, Cvijanovich NZ, Fitzgerald JC, et al. Prognostic and predictive value of endothelial dysfunction biomarkers in sepsis-associated acute kidney injury: risk-stratified analysis from a prospective observational cohort of pediatric septic shock. Crit Care. 2023 Jul 3;271(1):260. doi: 10.1186/s13054-023-04554-y
  • Zhou G, Liu J, Zhang H, et al. Elevated endothelial dysfunction-related biomarker levels indicate the severity and predict sepsis incidence. Sci Rep. 2022 Dec 19;121(1):21935. doi: 10.1038/s41598-022-26623-y
  • Boisrame-Helms J, Kremer H, Schini-Kerth V, et al. Endothelial dysfunction in sepsis. CVP. 2013 Mar 1;112(2):150–160. doi: 10.2174/1570161111311020005
  • Coletta C, Szabo C. Potential role of hydrogen sulfide in the pathogenesis of vascular dysfunction in septic shock. CVP. 2013 Mar 1;112(2):208–221. doi: 10.2174/1570161111311020010
  • Cusack R, Bos LD, Povoa P, et al. Endothelial dysfunction triggers acute respiratory distress syndrome in patients with sepsis: a narrative review. Front Med. 2023;10:1203827. doi: 10.3389/fmed.2023.1203827
  • Jiang F. Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol. 2016 Nov;43(11):1021–1028. doi: 10.1111/1440-1681.12649
  • Li Y, Suo L, Fu Z, et al. Pivotal role of endothelial cell autophagy in sepsis. Life Sci. 2021 Jul 1;276:119413. doi: 10.1016/j.lfs.2021.119413
  • Feng J, Liu L, He Y, et al. Novel insights into the pathogenesis of virus-induced ARDS: review on the central role of the epithelial-endothelial barrier. Expert Rev Clin Immunol. 2021 Jul;12:1–11.
  • Reglero-Real N, Perez-Gutierrez L, Nourshargh S. Endothelial cell autophagy keeps neutrophil trafficking under control. Autophagy. 2021 Dec;17(12):4509–4511. doi: 10.1080/15548627.2021.1987675
  • Reglero-Real N, Perez-Gutierrez L, Yoshimura A, et al. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity. 2021 Sep 14;549(9):1989–2004 e9. doi: 10.1016/j.immuni.2021.07.012
  • D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019 Jun;43(6):582–592. doi: 10.1002/cbin.11137
  • Li C, Wang W, Xie SS, et al. The programmed cell death of macrophages, endothelial cells, and tubular epithelial cells in sepsis-AKI. Front Med. 2021;8:796724. doi: 10.3389/fmed.2021.796724
  • Wen X, Xie B, Yuan S, et al. The “self-sacrifice” of ImmuneCells in sepsis. Front Immunol. 2022;13:833479. doi: 10.3389/fimmu.2022.833479
  • Zhu L, Wu G, Yang X, et al. Low density lipoprotein mimics insulin action on autophagy and glucose uptake in endothelial cells. Sci Rep. 2019 Feb 28;91(1):3020. doi: 10.1038/s41598-019-39559-7
  • Pi QZ, Wang XW, Jian ZL, et al. Melatonin alleviates cardiac dysfunction via increasing Sirt1-mediated beclin-1 deacetylation and autophagy during sepsis. Inflammation. 2021 Jun;443(3):1184–1193. doi: 10.1007/s10753-021-01413-2
  • Deng Z, Sun M, Wu J, et al. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis. 2021 Feb 26;122(2):217. doi: 10.1038/s41419-021-03508-y
  • Sun Y, Yao X, Zhang QJ, et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 2018 Nov 13;13820(20):2247–2262. doi: 10.1161/CIRCULATIONAHA.117.032821
  • Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017 Jul;395(5):517–528. doi: 10.1007/s00281-017-0639-8
  • Martin-Fernandez M, Tamayo-Velasco A, Aller R, et al. Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci. 2021 Jun 10;2212(12):6272. doi: 10.3390/ijms22126272
  • Ribatti D, Tamma R, Ruggieri S, et al. Surface markers: an identity card of endothelial cells. Microcirculation. 2020 Jan;271(1):e12587. doi: 10.1111/micc.12587
  • Leite AR, Borges-Canha M, Cardoso R, et al. Novel biomarkers for evaluation of endothelial dysfunction. Angiology. 2020 May;715(5):397–410. doi: 10.1177/0003319720903586
  • Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers. 2015;3(1–2):e978720. doi: 10.4161/21688370.2014.978720
  • Chen J, Jiang L, Yu XH, et al. Endocan: a key player of cardiovascular disease. Front Cardiovasc Med. 2021;8:798699. doi: 10.3389/fcvm.2021.798699
  • Gao H, Zhang Q, Chen J, et al. Porcine IL -6, IL -1β, and TNF -α regulate the expression of pro-inflammatory-related genes and tissue factor in human umbilical vein endothelial cells. Xenotransplantation. 2018 Sep;255(5):e12408. doi: 10.1111/xen.12408
  • Ko H, Il Kim Y, Ahn HJ. Activin suppresses the inflammatory response of TNF-alpha -stimulated human umbilical vein endothelial cells. Pharmazie. 2022 May 1;775:152–156.
  • Harm S, Gabor F, Hartmann J. Characterization of adsorbents for cytokine removal from blood in an in vitro model. J Immunol Res. 2015;2015:484736. doi: 10.1155/2015/484736
  • Rotimi SO, Bankole GE, Adelani IB, et al. Hesperidin prevents lipopolysaccharide-induced endotoxicity in rats. Immunopharmacol Immunotoxicol. 2016 Oct;385(5):364–371. doi: 10.1080/08923973.2016.1214142
  • Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019 Nov 28;2023(23):6008. doi: 10.3390/ijms20236008
  • Sebina I, Fogg LG, James KR, et al. IL-6 promotes CD4 + T-cell and B-cell activation during plasmodium infection. Parasite Immunol. 2017 Oct;3910(10). doi: 10.1111/pim.12455
  • Shamloul A, Steinemann G, Roos K, et al. The methyltransferase Smyd1 mediates LPS-triggered up-regulation of IL-6 in endothelial cells. Cells. 2021 Dec 13;10(12):3515. doi: 10.3390/cells10123515.
  • Ma S, Sun S, Li J, et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 2021 Apr;314(4):415–432. doi: 10.1038/s41422-020-00412-6
  • Matsushima K, Yang D, Oppenheim JJ. Interleukin-8: an evolving chemokine. Cytokine. 2022 May;153:155828. doi: 10.1016/j.cyto.2022.155828
  • Elshabrawy HA, Volin MV, Essani AB, et al. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis. 2018 May;212(2):215–228. doi: 10.1007/s10456-017-9589-y
  • Frisoni P, Neri M, D’Errico S, et al. Cytokine storm and histopathological findings in 60 cases of COVID-19-related death: from viral load research to immunohistochemical quantification of major players IL-1β, IL-6, IL-15 and TNF-α. Forensic Sci Med Pathol. 2022 Mar;18(1):4–19. doi: 10.1007/s12024-021-00414-9
  • Bhat AA, Nisar S, Singh M, et al. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: emerging avenue for targeted therapy. Cancer Commun (Lond). 2022 Aug;428(8):689–715. doi: 10.1002/cac2.12295
  • Johnson RH, Kho DT, Sj OC, et al. The functional and inflammatory response of brain endothelial cells to toll-like receptor agonists. Sci Rep. 2018 Jul 4;8(1):10102. doi: 10.1038/s41598-018-28518-3
  • Suraj J, Kurpinska A, Olkowicz M, et al. Development, validation and application of a micro-liquid chromatography-tandem mass spectrometry based method for simultaneous quantification of selected protein biomarkers of endothelial dysfunction in murine plasma. J Pharm Biomed Anal. 2018 Feb 5;149:465–474. doi: 10.1016/j.jpba.2017.11.023
  • Natarajan V. Mind the gap between the endothelium and E3 ubiquitin ligase: TRIM21 is a viable therapeutic target in sepsis-induced endothelial dysfunction. Am J Respir Cell Mol Biol. 2019 Dec;616(6):676–677. doi: 10.1165/rcmb.2019-0161ED
  • Yu H, Liu Q, Chen G, et al. SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis. Int Immunopharmacol. 2022 May;106:108600. doi: 10.1016/j.intimp.2022.108600
  • Lv D, Luo M, Yan J, et al. Protective effect of sirtuin 3 on CLP-Induced endothelial dysfunction of early sepsis by inhibiting NF-κB and NLRP3 signaling pathways. Inflammation. 2021 Oct;445(5):1782–1792. doi: 10.1007/s10753-021-01454-7
  • Huang L, Li Y, Cheng Z, et al. PCSK9 promotes endothelial dysfunction during sepsis via the TLR4/MyD88/NF-κB and NLRP3 Pathways. Inflammation. 2023 Feb;461(1):115–128. doi: 10.1007/s10753-022-01715-z
  • Wu B, Xu MM, Fan C, et al. STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacol Sin. 2022 Aug;438(8):2055–2066. doi: 10.1038/s41401-021-00813-2
  • Wang L, Cao Y, Gorshkov B, et al. Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res. 2019 Aug;146:104292. doi: 10.1016/j.phrs.2019.104292
  • Xing D, Hage FG, Feng W, et al. Endothelial cells overexpressing CXCR1/2 are renoprotective in rats with acute kidney injury. Am J Physiol Renal Physiol. 2023 Apr 1;3244:F374–F86.
  • Leligdowicz A, Richard-Greenblatt M, Wright J, et al. Endothelial activation: the ang/tie axis in sepsis. Front Immunol. 2018;9:838. doi: 10.3389/fimmu.2018.00838
  • Yang K, Fan M, Wang X, et al. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. Sci Adv. 2022 Apr 29;8(17):eabm8965. doi: 10.1126/sciadv.abm8965
  • Gao N, Dong L. MicroRNA-146 regulates the inflammatory cytokines expression in vascular endothelial cells during sepsis. Pharmazie. 2017 Nov 1;7211:700–704.
  • Urban C, Hayes HV, Piraino G, et al. Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol. 2022;13:984298. doi: 10.3389/fimmu.2022.984298
  • Liu T, Zhang C, Ying J, et al. Inhibition of the intracellular domain of Notch1 results in vascular endothelial cell dysfunction in sepsis. Front Immunol. 2023;14:1134556. doi: 10.3389/fimmu.2023.1134556
  • Ozyilmaz E, Buyuknacar HSG, Bagir EK, et al. Early propranolol treatment ameliorates endothelial dysfunction in experimental septic lung. Adv Clin Exp Med. 2019 Mar;28(3):291–297. doi: 10.17219/acem/78248
  • Dalainas I. Pathogenesis, diagnosis, and management of disseminated intravascular coagulation: a literature review. Eur Rev Med Pharmacol Sci. 2008 Jan;121:19–31.
  • Gando S, Kameue T, Matsuda N, et al. Imbalances between the levels of tissue factor and tissue factor pathway inhibitor in ARDS patients. Thromb Res. 2003 Jan 25;1092-3:119–124.
  • Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007 May;1705(5):1435–1444. doi: 10.2353/ajpath.2007.060872
  • Dellinger RP. Inflammation and coagulation: implications for the septic patient. Clin Infect Dis. 2003 May 15;3610:1259–1265.
  • Walborn A, Rondina M, Mosier M, et al. Endothelial dysfunction is associated with mortality and severity of coagulopathy in patients with sepsis and disseminated intravascular coagulation. Clin Appl Thromb Hemost. 2019 Jan;25:1076029619852163. doi: 10.1177/1076029619852163
  • Statz S, Sabal G, Walborn A, et al. Angiopoietin 2 levels in the risk stratification and mortality outcome prediction of sepsis-associated coagulopathy. Clin Appl Thromb Hemost. 2018 Nov;248(8):1223–1233. doi: 10.1177/1076029618786029
  • Scarlatescu E, Tomescu D, Arama SS. Anticoagulant therapy in sepsis. the importance of timing. J Crit Care Med (Targu Mures). 2017 Apr;3(2):63–69. doi: 10.1515/jccm-2017-0011
  • Gould TJ, Lysov Z, Liaw PC. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015 Jun;13 Suppl 1:S82–91. doi: 10.1111/jth.12977
  • Yang X, Li L, Liu J, et al. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-kappaB and AP-1. Thromb Res. 2016 Jan;137:211–218. doi: 10.1016/j.thromres.2015.10.012
  • David S, Kumpers P, van Slyke P, et al. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther. 2013 Apr;3451(1):2–6. doi: 10.1124/jpet.112.201061
  • Parikh SM. Angiopoietins and Tie2 in vascular inflammation. Curr Opin Hematol. 2017 Sep;245(5):432–438. doi: 10.1097/MOH.0000000000000361
  • Thamm K, David S. Role of angiopoietin-2 in infection - a double-edged sword? Cytokine. 2016 Jul;83:61–63. doi: 10.1016/j.cyto.2016.03.019
  • Cahill PA, Redmond EM. Vascular endothelium - gatekeeper of vessel health. Atherosclerosis. 2016 May;248:97–109. doi: 10.1016/j.atherosclerosis.2016.03.007
  • Chan YH, Harith HH, Israf DA, et al. Differential regulation of LPS-Mediated VE-Cadherin disruption in human endothelial cells and the underlying signaling pathways: a mini review. Front Cell Dev Biol. 2019;7:280. doi: 10.3389/fcell.2019.00280
  • Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock. 2016 Mar;453(3):259–270. doi: 10.1097/SHK.0000000000000473
  • Zhang G, Cai Q, Zhou H, et al. OxLDL/β2GPI/anti‑β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs. Mol Med Rep. 2021 Feb;23(2):232. doi: 10.3892/mmr.2020.11787
  • Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023 Jan;131(1):e1170. doi: 10.1002/ctm2.1170
  • Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? Journal of cell biology. 2012 Sep 3;1985(5):773–783. doi: 10.1083/jcb.201203170
  • Chen Z, Zhang H, Qu M, et al. Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front Cell Infect Microbiol. 2021;11:653228. doi: 10.3389/fcimb.2021.653228
  • Jiang M, Wu W, Xia Y, et al. Platelet-derived extracellular vesicles promote endothelial dysfunction in sepsis by enhancing neutrophil extracellular traps. BMC Immunol. 2023 Aug 9;241(1):22. doi: 10.1186/s12865-023-00560-5
  • van der Poll T, Parker RI. Platelet activation and endothelial cell dysfunction. Crit Care Clin. 2020 Apr;362(2):233–253. doi: 10.1016/j.ccc.2019.11.002
  • Miyashita T, Ahmed AK, Nakanuma S, et al. A three-phase approach for the early identification of acute lung injury induced by severe sepsis. Vivo. 2016 Jul;304:341–349.
  • Leligdowicz A, Chun LF, Jauregui A, et al. Human pulmonary endothelial cell permeability after exposure to LPS-stimulated leukocyte supernatants derived from patients with early sepsis. Am J Physiol Lung Cell Mole Physiol. 2018 Nov 1;3155(5):L638–L44. doi: 10.1152/ajplung.00286.2018
  • Fernandez-Sarmiento J, Salazar-Pelaez LM, Carcillo JA. The endothelial glycocalyx: a fundamental determinant of vascular permeability in sepsis. Pediatr Crit Care Med. 2020 May;21(5):e291–e300. doi: 10.1097/PCC.0000000000002266
  • Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care. 2017 May;453(3):295–307. doi: 10.1177/0310057X1704500305
  • Goldenberg NM, Steinberg BE, Slutsky AS, et al. Broken barriers: a new take on sepsis pathogenesis. Sci Transl Med. 2011 Jun 22;3(88):88ps25. doi: 10.1126/scitranslmed.3002011
  • Barichello T, Generoso JS, Collodel A, et al. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021 Jan 2;91(1):1840912. doi: 10.1080/21688370.2020.1840912
  • Deniau B, Takagi K, Asakage A, et al. Adrecizumab: an investigational agent for the biomarker-guided treatment of sepsis. Expert Opin Investig Drugs. 2021 Feb;302(2):95–102. doi: 10.1080/13543784.2021.1857365
  • van Lier D, Picod A, Marx G, et al. Effects of enrichment strategies on outcome of adrecizumab treatment in septic shock: post-hoc analyses of the phase II adrenomedullin and outcome in septic shock 2 trial. Front Med. 2022;9:1058235. doi: 10.3389/fmed.2022.1058235
  • Laterre PF, Pickkers P, Marx G, et al. Safety and tolerability of non-neutralizing adrenomedullin antibody adrecizumab (HAM8101) in septic shock patients: the AdrenOSS-2 phase 2a biomarker-guided trial. Intensive care Med. 2021 Nov;4711(11):1284–1294. doi: 10.1007/s00134-021-06537-5
  • Lawson C, Rose M, Wolf S. Leukocyte adhesion under hemodynamic flow conditions. Methods Mol Biol. 2017;1591:85–100. doi: 10.1007/978-1-4939-6931-9_7
  • Eckert D, Rapp F, Tsedeke AT, et al. ROS- and radiation source-dependent modulation of leukocyte adhesion to primary microvascular endothelial cells. Cells. 2021 Dec 27;11(1):111. doi: 10.3390/cells11010072
  • Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med. 2021 Apr;274(4):314–331. doi: 10.1016/j.molmed.2020.11.006
  • Moccia F, Negri S, Shekha M, et al. Endothelial Ca(2+) signaling, angiogenesis and vasculogenesis: just what it takes to make a blood vessel. Int J Mol Sci. 2016 Aug 14;2016(16):3962. doi: 10.3390/ijms20163962
  • Liu H, Yu X, Yu S, et al. Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol. 2015 Dec;292(2):937–946. doi: 10.1016/j.intimp.2015.10.010
  • Nakamori Y, Park EJ, Shimaoka M. Immune deregulation in sepsis and septic shock: reversing immune paralysis by targeting PD-1/PD-L1 pathway. Front Immunol. 2020;11:624279. doi: 10.3389/fimmu.2020.624279
  • Sriskandan S, Altmann DM. The immunology of sepsis. J Pathol. 2008 Jan;2142(2):211–223. doi: 10.1002/path.2274
  • Kingsley SM, Bhat BV. Could stem cells be the future therapy for sepsis? Blood Rev. 2016 Nov;306(6):439–452. doi: 10.1016/j.blre.2016.05.004
  • Garduno A, Cusack R, Leone M, et al. Multi-omics endotypes in ICU sepsis-induced immunosuppression. Microorganisms. 2023 Apr 25;11(5):115. doi: 10.3390/microorganisms11051119
  • Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Military Med Res. 2022 Oct 91;9(1):56. doi: 10.1186/s40779-022-00422-y
  • Allam C, Mouton W, Testaert H, et al. Hyper-inflammatory profile and immunoparalysis in patients with severe legionnaires’ disease. Front Cell Infect Microbiol. 2023;13:1252515. doi: 10.3389/fcimb.2023.1252515
  • Xing Y, Cheng D, Shi C, et al. The protective role of YTHDF1-knock down macrophages on the immune paralysis of severe sepsis rats with ECMO. Microvasc Res. 2021 Sep;137:104178. doi: 10.1016/j.mvr.2021.104178
  • Calvier L, Alexander AE, Herz J. The “6B” strategy: build back a better blood–brain barrier. Immuno. 2022 Sep;2(3):506–511. doi: 10.3390/immuno2030032
  • Feng J, Liu L, Yao F, et al. The protective effect of tanshinone IIa on endothelial cells: a generalist among clinical therapeutics. Expert Rev Clin Pharmacol. 2021 Feb;14(2):239–248. doi: 10.1080/17512433.2021.1878877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.