281
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial composition of sponges, sediment and seawater in enclosed and open marine lakes in Ha Long Bay Vietnam

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 18-31 | Received 25 Nov 2018, Accepted 21 Jul 2019, Published online: 27 Dec 2019

References

  • Angly FE, Heath C, Morgan TC, Tonin H, Rich V, Schaffelke B, Bourne DG, Tyson GW. 2016. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ. 4:e1511. doi:10.7717/peerj.1511.
  • Azzini F, Calcinai B, Cerrano C, Bavestrello G, Pansini M. 2007. Sponges of the marine karst lakes and of the coast of the islands of Ha Long Bay (North Vietnam). In: Custodia MR, Lobo-Hajdu G, Hajdu E, Muricy G, editors. Porifera research: biodiversity, innovation and sustainability. Rio de Janeiro: Museo Nacional; p. 157–164.
  • Bayer K, Kamke J, Hentschel U. 2014. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiology Ecology. 89:679–690. doi:10.1111/1574-6941.12369.
  • Becking LE, Cleary DFR, de Voogd NJ. 2013. Sponge composition and abundance in the mangroves and marine lakes of Berau, Indonesia. Marine Ecology Progress Series. 481:105–120. doi:10.3354/meps10155.
  • Becking LE, De Leeuw C, Vogler C. 2014. Newly discovered “jellyfish lakes” in Misool, Raja Ampat, Papua, Indonesia. Marine Biodiversity. 45:597–598. doi:10.1007/s12526-014-0268-6.
  • Becking LE, de Leeuw C, Vogler C. 2015. Newly discovered “jellyfish lakes” in Misool, Raja Ampat, Papua, Indonesia. Marine Biodiversity. 45:597–598. doi:10.1007/s12526-014-0268-6.
  • Becking LE, de Leeuw CA, Knegt B, Maas DL, de Voogd NJ, Abdunnur, Suyatna I, Peijnenburg KTCA. 2016. Highly divergent mussel lineages in isolated Indonesian marine lakes. PeerJ 4:e2496. doi:10.7717/peerj.2496.
  • Becking LE, Renema W, Santodomingo NK, Hoeksema BW, Tuti Y, de Voogd NJ. 2011. Recently discovered landlocked basins in Indonesia reveal high habitat diversity in anchialine systems. Hydrobiologia. 677:89–105. doi:10.1007/s10750-011-0742-0.
  • Bergman O, Mayzel B, Anderson MA, Shpigel M, Hill RT, Ilan M. 2011. Examination of marine-based cultivation of three demosponges for acquiring bioactive marine natural products. Marine Drugs. 9(12):2201–2219. doi:10.3390/md9112201.
  • Blunt JW, Munro MHG. 1998. Marinlit. A database of the literature on marine natural products for use on a Macintosh computer prepared and maintained by the Marine Chemistry Group. Canterbury (New Zealand): Department of Chemistry, University of Canterbury.
  • Calcinai B, Azzini F, Bavestrello G, Cerrano C, Pansini M, Thung DC. 2006. Boring sponges from Ha Long Bay, Tonkin Gulf, Vietnam. Zoological Studies. 45(2):201–212.
  • Capone DG, Dunham SE, Horrigan SG, Duguay LE. 1992. Microbial nitrogen transformations in unconsolidated coral reef sediments. Marine Ecology Progress Series. 80:75–88. doi:10.3354/meps080075.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon J, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7:335–336. doi:10.1038/nmeth.f.303.
  • Carballeira NM, Alicea J. 2002. Novel methoxylated FA from the Caribbean sponge Spheciospongia cuspidifera. Lipids. 37(3):305–308. doi:10.1007/s11745-002-0895-1.
  • Cleary DFR. 2003. An examination of scale of assessment, logging and ENSO-induced fires on butterfly diversity in Borneo. Oecologia. 135:313–321. doi:10.1007/s00442-003-1188-5.
  • Cleary DFR, Becking LE, Pires ACC, de Voogd NJ, Egas C, Gomes NCM. 2013. Habitat and host related variation in sponge bacterial communities in Indonesian coral reefs and marine lakes. FEMS Microbiology Ecology. 85:465–482. doi:10.1111/1574-6941.12135.
  • Cleary DFR, Becking LE, Polónia ARM, Freitas R, Gomes NCM. 2015. Composition and putative functional ecology of mussels inhabiting Indonesian marine lakes. Antonie Van Leeuwenhoek. 107:821–834. doi:10.1007/s10482-014-0375-1.
  • Cleary DFR, Becking LE, Polónia ARM, Freitas R, Gomes NCM. 2016. Jellyfish associated microbiomes of Indonesian Marine lakes. FEMS Microbiology Ecology. 92:fiw064. doi:10.1093/femsec/fiw064.
  • Cleary DFR, Coelho FJRC, Oliveira V, Gomes NCM, Polónia ARM. 2017. Sediment depth and habitat as predictors of the diversity and composition of sediment bacterial communities in an intertidal estuarine environment. Marine Ecology. 38:e12411. doi:10.1111/maec.12411.
  • Cleary DFR, de Voogd NJ, Polónia ARM, Freitas R, Gomes NCM. 2015. Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in an Indonesian coral reef environment. Microbial Ecology. 70:889–903. doi:10.1007/s00248-015-0632-5.
  • Cleary DFR, Polónia ARM. 2018. Bacterial and archaeal communities inhabiting mussels, sediment and water in Indonesian anchialine lakes. Antonie Van Leeuwenhoek. 111(2):237–257. doi:10.1007/s10482-017-0944-1.
  • Cleary DFR, Polónia ARM, de Voogd NJ. 2018. Bacterial communities inhabiting the sponge Biemna fortis, sediment and water in marine lakes and the open sea. Microbial Ecology. 76:610–624. doi:10.1007/s00248-018-1156-6.
  • Cuc NTK, Dat TTH, Hong TT, Cuong PV. 2017. Phylogenetic diversity of microorganisms associated with three marine sponges from Mien Trung sea of Vietnam. Journal of Science and Technology. 55(2):168. doi:10.15625/0866-708X/55/2/8577.
  • Dawson MN, Hamner WM. 2005. Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proceedings of the National Academy of Sciences. 102:9235–9240. doi:10.1073/pnas.0503635102.
  • de Voogd NJ, Cleary DFR, Polónia ARM, Gomes NCM. 2015. Bacterial communities of four different biotopes and their functional genomic nitrogen signature from the thousand-island reef complex, West-Java, Indonesia. FEMS Microbiology Ecology. 91:fiv019. doi:10.1093/femsec/fiv019.
  • Edgar R, Haas B, Clemente J, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194–2200. doi:10.1093/bioinformatics/btr381.
  • Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods. 10:996–998. doi:10.1038/nmeth.2604.
  • Eltamany E, Radwan M, Ibrahim A, ElSohly M, Hassanean H, Ahmed S. 2014. Antitumor metabolites from the Red Sea sponge Spheciospongia vagabunda. Planta Medica. 80(10):PB5. doi:10.1055/s-0034-1382371.
  • Faulkner DJ, Harper MK, Haygood MG, Salomon CE, Schmidt EW. 2000. Symbiotic bacteria in sponges: sources of bioactive substances. In: Fusetani N, editor. Drugs from the sea. Basel (Switzerland): Karger; p. 107–119.
  • Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiology Ecology. 38:105–115. doi:10.1111/j.1574-6941.2001.tb00888.x.
  • Fryer JL, Lannan CNWB. 2009. Piscirickettsiaceae. In: Brenner DJ, Krieg NR, Staley JR, editors. Bergey’s manual of systematic bacteriology, volume 2: The Proteobacteria. New York: Springer; p. 180–198.
  • Fu FX, Warner ME, Zhang YH, Feng YY, Hutchins DA. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology. 43:485–496. doi:10.1111/j.1529-8817.2007.00355.x.
  • Gerçe B, Schwartz T, Syldatk C, Hausmann R. 2011. Differences between bacterial communities associated with the surface or tissue of Mediterranean sponge species. Microbial Ecology. 61(4):769–782. doi:10.1007/s00248-011-9802-2.
  • Ghai R, Mizuno C, Picazo A, Camacho A, Rodriguez-Valera F. 2013. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Scientific Reports. 3:2471. doi:10.1038/srep02471.
  • Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U. 2014. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. The Biological Bulletin. 227(1):78–88. doi:10.1086/BBLv227n1p78.
  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonca-Hagler L, Smalla K. 2001. Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil. 232:167–180. doi:10.1023/A:1010350406708.
  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology. 68:4431–4440. doi:10.1128/AEM.68.9.4431-4440.2002.
  • Hentschel U, Usher KM, Taylor MW. 2006. Marine sponges as microbial fermenters. FEMS Microbiology Ecology. 55:167–177. doi:10.1111/j.1574-6941.2005.00046.x.
  • Holthuis LB. 1973. Caridean shrimps found in land-locked saltwater pools at four indo-west pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zoologische Verhandelingen. 128:1–48.
  • Imhoff JL, Hiraishi A, Süling J. 2009. Anoxygenic phototrophic purple bacteria. In: Brenner DJ, Krieg NR, Staley JR, editors. Bergey’s manual of systematic bacteriology, volume 2: The Proteobacteria. New York: Springer; p. 180–198.
  • Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY. 2011. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. The ISME Journal. 5(4):650–664. doi:10.1038/ismej.2010.165.
  • Lenth R. 2017. Emmeans: estimated marginal means, aka least-squares means. https://CRAN.R-project.org/package=emmeans.
  • Liu D, Xu MJ, Wu LJ, Deng ZW, Lin WH. 2009. Norisoprenoids from the marine sponge Spheciospongia sp. Journal of Asian Natural Products Research. 11(9):811–816. doi:10.1080/10286020903058941.
  • Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U. 2013. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Molecular Ecology. 23:1348–1363. doi:10.1111/mec.12365.
  • Moitinho-Silva L, Steinert G, Nielsen S, Hardoim CCP, Wu YC, McCormack GP, López-Legentil S, Marchant R, Webster N, Thomas T, Hentschel U. 2017. Predicting the HMA-LMA status in marine sponges by machine learning. Frontiers in Microbiology. 8:752. doi:10.3389/fmicb.2017.00752.
  • Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS. 2015. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. The ISME Journal. 9:894–908. doi:10.1038/ismej.2014.188.
  • Neuweiler F, Burdige DJ. 2005. The modern calcifying sponge Spheciospongia vesparium (Lamarck, 1815), Great Bahama Bank: Implications for ancient sponge mud-mounds. Sedimentary Geology. 175(1):89–98. doi:10.1016/j.sedgeo.2004.12.021.
  • Noyer C, Casamayor EO, Becerro MA. 2014. Environmental heterogeneity and microbial inheritance influence sponge-associated bacterial composition of Spongia lamella. Microbial Ecology. 68(3):611. doi:10.1007/s00248-014-0428-z.
  • Noyer C, Hamilton A, Sacristán-Soriano O, Becerro MA. 2010. Quantitative comparison of bacterial communities in two Mediterranean sponges. Symbiosis. 51(3):239–243. doi:10.1007/s13199-010-0082-2.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, et al. 2017. Vegan: community ecology package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan.
  • Osinga R, Tramper J, Wijffels RH. 1998. Cultivation of marine sponges for metabolite production: applications for biotechnology? Trends in Biotechnology. 16:130–4. doi:10.1016/S0167-7799(97)01164-5.
  • Polónia ARM, Cleary DFR, de Voogd NJ, Renema W, Hoeksema BW, Martins A, Gomes NCM. 2015. Habitat and water quality variables as predictors of community composition in an Indonesian coral reef: a multi-taxon study in the Spermonde Archipelago. Science of The Total Environment. 537:139–151. doi:10.1016/j.scitotenv.2015.07.102.
  • Poppell E, Weisz J, Spicer L, Massaro A, Hill A, Hill M. 2014. Sponge heterotrophic capacity and bacterial community structure in high-and low-microbial abundance sponges. Marine Ecology. 35(4):414–424. doi:10.1111/maec.12098.
  • R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 3-900051-07-0. http://www.R-project.org. http://www.R-project.org.
  • Sacristán-Soriano O, Banaigs B, Casamayor EO, Becerro MA. 2011. Exploring the links between natural products and bacterial assemblages in the sponge Aplysina aerophoba. Applied and Environmental Microbiology. 77:862–870. doi:10.1128/AEM.00100-10.
  • Schmitt S, Deines P, Behnam F, Wagner M, Taylor MW. 2011. Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiology Ecology. 78:497–510. doi:10.1111/j.1574-6941.2011.01179.x.
  • Sherry A, Gray ND, Ditchfield AK, Aitken CM, Jones DM, Röling WFM, Hallmann C, Larter SR, Bowler BFJ, Head IM. 2013. Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. International Biodeterioration & Biodegradation. 81:105–113. doi:10.1016/j.ibiod.2012.04.009.
  • Simister R, Taylor MW, Rogers KM, Schupp PJ, Deines P. 2013. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. FEMS Microbiology Ecology. 85(1):195–205. doi:10.1111/1574-6941.12109.
  • Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH. 2005. Marine sponges as pharmacy. Marine Biotechnology. 7:142–162. doi:10.1007/s10126-004-0405-5.
  • Spring S, Riedel T. 2013. Mixotrophic growth of bacteriochlorophyll-a containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability. BMC Microbiology. 13(1):117. doi:10.1186/1471-2180-13-117.
  • Spring S, Scheuner C, Göker M, Klenk HP. 2015. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Frontiers in Microbiology. 6:281. doi:10.3389/fmicb.2015.00281.
  • Taylor JD, Cottingham SD, Billinge J, Cunliffe M. 2014. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. The ISME Journal. 8(1):245–248. doi:10.1038/ismej.2013.178.
  • Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews. 71:295–347. doi:10.1128/MMBR.00040-06.
  • Thacker RW, Freeman CJ. 2012. Sponge-microbe symbioses: recent advances and new directions. Advances in Marine Biology. 62:57–111. doi:10.1016/B978-0-12-394283-8.00002-3.
  • Tweedie MCK. 1984. An index which distinguishes between some important exponential families. In: Ghosh JK, Roy J, editors. Statistics: applications and new directions - proceedings of the Indian statistical institute golden jubilee international conference. Calcutta: Indian Statistical Institute; p. 579–604.
  • Unson MD, Holland ND, Faulkner DJ. 1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of a crystalline metabolite in the sponge tissue. Marine Biology. 119:1–11. doi:10.1007/BF00350100.
  • Vacelet J, Donadey C. 1977. Electron microscope study of the association between some sponges and bacteria. Journal of Experimental Marine Biology and Ecology. 30:301–314. doi:10.1016/0022-0981(77)90038-7.
  • Van Soest RWM, Braekman JC. 1999. Chemosystematics of Porifera: a review. Memoirs of the Queensland Museum. 44:569–598.
  • Van Soest RWM, Erpenbeck D, Alvarez B. 2002. Family dictyonellidae. In: Hooper JNA, Van Soest RWM, Willenz P, editors. Systema porifera. Boston: Springer; p. 773–786.
  • Vaz-Moreira I, Egas C, Nunes OC, Manaia CM. 2011. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek. 100:245–257. doi:10.1007/s10482-011-9583-0.
  • Wang Q, Garrity G, Tiedje J, Cole JR. 2007. Naive bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 73:5261–7. doi:10.1128/AEM.00062-07.
  • Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, Schmidt C, Uthicke S. 2016. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Scientific Reports. 6:19324. doi:10.1038/srep19324.
  • Weisz JB, Lindquist N, Martens CS. 2008. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia. 155(2):367–376. doi:10.1007/s00442-007-0910-0.
  • Whitson EL, Bugni TS, Chockalingam PS, Concepcion GP, Harper MK, He M, Hooper JN, Mangalindan GC, Ritacco F, Ireland CM. 2008. Spheciosterol sulfates, PKCζ inhibitors from a Philippine sponge spheciospongia sp. Journal of Natural Products. 71(7):1213–1217. doi:10.1021/np8001628.
  • Wilkinson CR. 1984. Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proceedings of the Royal Society of London. Series B. Biological Sciences. 220:509–518. doi:10.1098/rspb.1984.0017.
  • Yu Y, Lee C, Kim J, Hwang S. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering. 89:670–679. doi:10.1002/bit.20347.
  • Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology. 7:203–214. doi:10.1089/10665270050081478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.