218
Views
0
CrossRef citations to date
0
Altmetric
Original articles

Variations in seaweed-associated and planktonic bacterial communities along the coast of Ghana

, , , , , , , & show all
Pages 219-233 | Received 11 Dec 2022, Accepted 09 May 2023, Published online: 12 Jun 2023

References

  • Abdullah NS, Naim MA, Mohd-Nor N, Zainal Abidin ZA. 2020. Diversity of cultivable bacteria by strategic enrichment isolated from farmed edible red seaweed, gracilaria sp. Journal CleanWAS. 4(1):17–20. doi:10.26480/jcleanwas.01.2020.17.20.
  • Akrong MO, Anning AK, Addico GND, deGraft-Johnson KAA, Adu-Gyamfi A, Ale M, Meyer AS. 2021. Spatio-temporal variations in seaweed diversity and abundance of selected coastal areas in Ghana. Regional Studies in Marine Science. 44:1–12. doi:10.1016/j.rsma.2021.101719.
  • Alba K, Kontogiorgos V. 2018. Seaweed polysaccharides (agar, alginate carrageenan). Encyclopedia of Food Chemistry. 240–250. Amsterdam (Netherlands): Elsevier. doi:10.1016/B978-0-08-100596-5.21587-4.
  • Albakosh MA, Naidoo RK, Kirby B, Bauer R. 2016. Identification of epiphytic bacterial communities associated with the brown alga splachnidium rugosum. Journal of Applied Phycology. 28(3):1891–1901. doi:10.1007/s10811-015-0725-z.
  • APHA/AWWA/WEF. 2017. Standard Methods for the Examination of Water and Wastewater. 23rd ed. Denver: American Public Health Association.
  • Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia. 461:37–40. doi:10.1023/A:1012756913566.
  • Ashfaq MY, Da'na DA, Al-Ghouti MA. 2022. Application of MALDI-TOF MS for identification of environmental bacteria: A review. Journal of Environmental Management. 305:1–24. doi:10.1016/j.jenvman.2021.114359.
  • Aslam M. 2009. Diversity, species richness and evenness of moth fauna of Peshawar. Pakistan Entomologist. 31(2):99–102.
  • Barberi ON, Byron CJ, Burkholder KM, St. Gelais AT, Williams AK. 2020. Assessment of bacterial pathogens on edible macroalgae in coastal waters. Journal of Applied Phycology. 32(1):683–696. doi:10.1007/s10811-019-01993-5.
  • Beleneva IA, Zhukova NV. 2006. Bacterial communities of some brown and Red algae from peter the great Bay, the Sea of Japan. Mikrobiologiya. 75(3):410–419. doi:10.1134/S0026261706030180.
  • Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S. 2011. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga ulva australis. The ISME Journal. 5:590–600. doi:10.1038/ismej.2010.164.
  • Cheesbrough M. 1984. Laboratory equipment, where are the tools to do the work?. British Medical Journal (Clinical research ed.). 288(6435).
  • Chellaram C, Raja P, John AA, Krithika S. 2013. Antagonistic effect of epiphytic bacteria from marine algae, southeastern India. Pakistan Journal of Biological Sciences: PJBS. 16(9):431–434. doi:10.3923/pjbs.2013.431.434.
  • Comba-González N, Ruiz-Toquica J, López-Kleine L, Montoya-Castaño D. 2016. epiphytic-bacteria-of-macroalgae-of-the-genus-ulva-and-their-potential-inproducing-enzymes-having-biotechnological-interest-gOzI_4.pdf. Journal of Marine Biology & Oceanography Review. 5(2):1–9. doi:10.4172/2324-8661.1000153.
  • Droop MR. 2007. Vitamins, phytoplankton and bacteria: symbiosis or scavenging? Journal of Plankton Research. 29(2):107–113. doi:10.1093/plankt/fbm009.
  • Eddabra R, Prévost G, Scheftel JM. 2012. Rapid discrimination of environmental vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Microbiological Research. 167(4):226–230. doi:10.1016/j.micres.2011.09.002.
  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. 2013. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiology Reviews. 37(3):462–476. doi:10.1111/1574-6976.12011.
  • Emami K, Nelson A, Hack E, Zhang J, Green DH, Caldwell GS, Mesbahi E. 2016. MALDI-TOF Mass spectrometry discriminates known species and marine environmental isolates of pseudoalteromonas. Frontiers in Microbiology. 7:1–14. doi:10.3389/fmicb.2016.00104.
  • Ganesan M, Thiruppathi S, Jha B. 2006. Mariculture of hypnea musciformis (wulfen) lamouroux in south east coast of India. Aquaculture. 256(1–4):201–211. doi:10.1016/j.aquaculture.2006.01.039.
  • Gbedemah ST. 2017. Oceanography and marine research current patterns in intertidal macro-algal diversity and zonation of Two sites on Ghana ‘ s coast. Journal of Oceanography and Marine Research. 5(2):1–11. doi:10.4172/2572-3103.1000159.
  • Giebel RA, Fredenberg W, Sandrin TR. 2008. Characterization of environmental isolates of enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Research. 42(4–5):931–940. doi:10.1016/j.watres.2007.09.005.
  • Goecke F, Labes A, Wiese J, Imhoff JF. 2010. Review chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series. 409:267–300. doi:10.3354/meps08607.
  • Grueneberg J, Engelen AH, Costa R, Wichard T. 2016. Macroalgal morphogenesis induced by waterborne compounds and bacteria in coastal seawater. PLoS One. 11(1):1–22. doi:10.1371/journal.pone.0146307.
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST : Paleontological Statistics Software Package for Education and Data Analysis PAST : PALEONTOLOGICAL STATISTICS SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS Even a cursory glance at the recent paleontological literature should convince anyone tha. (May).
  • Hengst MB, Andrade S, González B, Correa JA. 2010. Changes in epiphytic bacterial communities of intertidal seaweeds modulated by host, temporality, and copper enrichment. Microbial Ecology. 60:282–290. doi:10.1007/s00248-010-9647-0.
  • Hollants J, Leliaert F, Verbruggen H, Willems A, Clerck OD, Willems A. 2013. Permanent residents or temporary lodgers : characterizing intracellular bacterial communities in the siphonous green alga bryopsis. Proceedings of the Royal Society B: Biological Sciences. 280:1–8. doi:10.1098/rspb.2012.2659.
  • John DM, Asare SO. 1975. A preliminary study of the variations in yield and properties of phycocolloids from Ghanaian seaweeds. Marine Biology. 30(4):325–330. doi:10.1007/BF00390637.
  • John DW, Lawson GW, Ameka G. 2001. Seaweeds of the west african sub-region: identification manual. Publication for ‘marine biodiversity capacity-building in the west african sub-region’ programme, darwin initiative for the survival of species. London: The Natural Museum; p. 213.
  • Juhmani AS, Vezzi A, Wahsha M, Buosi A, Pascale FD, Schiavon R, Sfriso A. 2020. Diversity and dynamics of seaweed associated microbial communities inhabiting the lagoon of venice. Microorganisms. 8(11):1–23. doi:10.3390/microorganisms8111657.
  • Karthick P, Mohanraju, R. 2018. Antimicrobial potential of epiphytic bacteria associated with seaweeds of little andaman, india. Isolation of marine bacteria. 9:1–11. doi:10.3389/fmicb.2018.00611.
  • Kizhakkekalam VK, Chakraborty K. 2019. Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Archives of Microbiology. 201(4):505–518. doi:10.1007/s00203-018-1592-1.
  • Kumar CG, Sahu N, Reddy GN, Prasad RBN, Nagesh N, Kamal A. 2013. Production of melanin pigment from pseudomonas stutzeri isolated from red seaweed hypnea musciformis. Letters in Applied Microbiology. 1:295–302. doi:10.1111/lam.12111.
  • Lachnit T, Blümel M, Imhoff JF, Wahl M. 2009. Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Aquatic Biology. 5(2):181–186. doi:10.3354/ab00149.
  • Lachnit T, Meske D, Wahl M, Harder T, Schmitz R. 2011. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environmental Microbiology. 13(3):655–665. doi:10.1111/j.1462-2920.2010.02371.x.
  • Lam C, Harder T. 2007. Marine macroalgae affect abundance and community richness of bacterioplankton in close proximity. Journal of Phycology. 43(5):874–881. doi:10.1111/j.1529-8817.2007.00385.x.
  • Lawson GW. 1956. Rocky shore zonation on the gold coast. Journal of Ecology. 44(1): 153-170.
  • Liang Z, Liu F, Wang W, Zhang P, Sun X, Wang F, Kell H. 2019. High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased caulerpa lentillifera. BMC Microbiology. 19(1):1–15. doi:10.1186/s12866-019-1605-5.
  • Lieberman M, John DM, Lieberman D. 1979. Ecology of subtidal algae on seasonally devastated cobble substrates off Ghana. Ecology. 60(6):1151–1161. doi:10.2307/1936963.
  • Magdugo RP, Terme N, Lang M, Pliego-Cortés H, Marty C, Hurtado AQ, … Bourgougnon N. 2020. An analysis of the nutritional and health values of caulerpa racemosa (forsskål) and ulva fasciata (delile)—Two chlorophyta collected from the Philippines. Molecules MDPI. 25(12):1–23. doi:10.3390/molecules25122901.
  • Mahmud ZH, Neogi SB, Kassu A, Wada T, Islam MS, Nair GB, Ota F. 2007. Seaweeds as a reservoir for diverse vibrio parahaemolyticus populations in Japan. International Journal of Food Microbiology. 118(1):92–96. doi:10.1016/j.ijfoodmicro.2007.05.009.
  • Martin M, Portetelle D, Michel G, Vandenbol M. 2014. Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology. 98(7):2917–2935. doi:10.1007/s00253-014-5557-2.
  • McHugh DJ. 2003. Seaweeds uses as Human Foods. In A Guide to the Seaweed Industry. Retrieved from http://sci-hub.cc/http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=FAONI.xis&method=post&formato=2&cantidad=1&expresion=mfn=000376.
  • Menaa F, Wijesinghe PAUI, Thiripuranathar G, Uzair B, Iqbal H, Khan BA, Menaa B. 2020. Ecological and industrial implications of dynamic seaweed-associated microbiota interactions. Marine Drugs. 18(12):1–25. doi:10.3390/md18120641.
  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. 2006. Bioconversion of red seaweed galactans: A focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology. 71(1):23–33. doi:10.1007/s00253-006-0377-7.
  • Najam R, Ahmed SP, Azhar I. 2010. Pharmacological activities of hypnea musciformis. African Journal of Biomedical Research. 13(1):69–74. doi:10.4314/ajbr.v13i1.
  • Nimnoi P, Pongsilp N. 2020. Marine bacterial communities in the upper gulf of Thailand assessed by illumina next-generation sequencing platform. BMC Microbiology. 20(1):1–11. doi:10.1186/s12866-020-1701-6.
  • Nogales B, Lanfranconi MP, Piña-Villalonga JM, Bosch R. 2011. Anthropogenic perturbations in marine microbial communities. FEMS Microbiology Reviews. 35(2):275–298. doi:10.1111/j.1574-6976.2010.00248.x.
  • Normand AC, Cassagne C, Gautier M, Becker P, Ranque S, Hendrickx M, Piarroux R. 2017. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC microbiology. 17(1):1-17.
  • Paerl HW, Pinckney JL. 1996. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology. 31(3):225–247. doi:10.1007/BF00171569.
  • Pérez MJ, Falqué E, Domínguez H. 2016. Antimicrobial action of compounds from marine seaweed. Marine Drugs. 14(3):1–38. doi:10.3390/md14030052.
  • Phelps CM, McMahon K, Bissett A, Bernasconi R, Steinberg PD, Thomas T, Huggett MJ. 2021. The surface bacterial community of an Australian kelp shows cross-continental variation and relative stability within regions. FEMS Microbiology Ecology. 97(7):1–14. doi:10.1093/femsec/fiab089.
  • Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. 2017. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environmental Research. 152:7-16. doi:10.1016/j.envres.2016.09.020.
  • Ramírez-Puebla ST, Weigel BL, Jack L, Schlundt C, Pfister CA, Mark Welch JL. 2022. Spatial organization of the kelp microbiome at micron scales. Microbiome. 10(1):1–20. doi:10.1186/s40168-021-01184-w.
  • Rao D, Webb JS, Kjelleberg S. 2006. Microbial colonization and competition on the marine alga ulva australis. Applied and Environmental Microbiology. 72(8): 5547–5555. doi:10.1128/AEM.00449-06.
  • Rhein-Knudsen N, Ale MT, Ajalloueian F, Yu L, Meyer AS. 2017a. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids. 63:50–58. doi:10.1016/j.foodhyd.2016.08.023.
  • Rhein-Knudsen N, Meyer AS. 2021, March 1. Chemistry, gelation, and enzymatic modification of seaweed food hydrocolloids. Trends in Food Science and Technology. 109:608–621. doi:10.1016/j.tifs.2021.01.052.
  • Rhein-knudsen N, Tutor M, Ajalloueian F, Meyer AS. 2017b. Food hydrocolloids characterization of alginates from Ghanaian brown seaweeds. Food Hydrocolloids. 71:236–244. doi:10.1016/j.foodhyd.2017.05.016.
  • Rogers KL, Carreres-Calabuig JA, Gorokhova E, Posth NR. 2020. Micro-by-micro interactions: How microorganisms influence the fate of marine microplastics. Limnology and Oceanography Letters. 5(1):18–36. doi:10.1002/lol2.10136.
  • Selvarajan R, Sibanda T, Venkatachalam S, Ogola HJO, Christopher Obieze C, Msagati TA. 2019. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Scientific Reports. 9(1):1–14. doi:10.1038/s41598-019-56269-2.
  • Siegrist TJ, Anderson PD, Huen WH, Kleinheinz GT, McDermott CM, Sandrin TR. 2007. Discrimination and characterization of environmental strains of escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Journal of Microbiological Methods. 68(3):554–562. doi:10.1016/j.mimet.2006.10.012.
  • Silva-Jiménez H, Araujo-Palomares CL, Macías-Zamora JV, Ramírez-álvarez N, García-Lara B, Corrales-Escobosa AR. 2018. Identification by MALDI-TOF MS of environmental bacteria with high potential to degrade pyrene. Journal of the Mexican Chemical Society. 62(2 Special Issue). doi:10.29356/jmcs.v62i2.411.
  • Singh RP, Reddy CRK. 2014. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiology Ecology. 88(2):213–230. doi:10.1111/1574-6941.12297.
  • Srilekha V, Krishna G, Srinivas V, Charya M. 2017. Antimicrobial evaluation of bioactive pigment from salinicoccus sp isolated from nellore sea coast. Int J Biotechnol Biochem. 13(3):211–217.
  • Stabili L, Rizzo L, Pizzolante G, Alifano P. 2017. Spatial distribution of the culturable bacterial community associated with the invasive alga caulerpa cylindracea in the Mediterranean Sea. Marine Environmental Research. 125:90–98. doi:10.1016/j.marenvres.2017.02.001.
  • Staufenberger T, Thiel V, Wiese J, Imhoff JF. 2008. Phylogenetic Analysis of Bacteria Associated with Laminaria Saccharina. 64:65–77. doi:10.1111/j.1574-6941.2008.00445.x.
  • Stincone P, Brandelli A. 2020. Marine bacteria as source of antimicrobial compounds. Critical Reviews in Biotechnology. 40(3):306–319. doi:10.1080/07388551.2019.1710457.
  • Sumayya SS, Murugan K. 2016. Therapeutical importance of hypnea musciformis (wulfen) j.v. lamouroux : a red algal seaweed. Kongunadu Research Journal. 3(2):79–81. doi:10.26524/krj151.
  • Ullah S, Mehmood H, Pervin N, Zeb H, Kamal KR, Liaqat S. 2018. Shewanella putrefaciens: An emerging cause of nosocomial pneumonia. Journal of Investigative Medicine High Impact Case Reports. 6:0–2. doi:10.1177/2324709618775441.
  • Vignier N, Barreau M, Olive C, Baubion E, Theodose R, Hochedez P, Cabie A. 2013. Human infection with shewanella putrefaciens and S. algae: report of 16 cases in Martinique and review of the literature. American Journal of Tropical Medicine and Hygiene. 89(1):151–156. doi:10.4269/ajtmh.13-0055.
  • Wang G, Shuai L, Li Y, Lin W, Zhao X, Duan D. 2008. Phylogenetic analysis of epiphytic marine bacteria on hole-rotten diseased sporophytes of laminaria japonica. Journal of Applied Phycology. 20(4):403–409. doi:10.1007/s10811-007-9274-4.
  • Zhang F, Fang Y, Pang F, Liang S, Lu X, Kan B, Okamori S, Asakura T, Nishimura T, Tamizu E, et al. 2018. Rare shewanella spp. associated with pulmonary and bloodstream infections of cancer patients, China: A case report. BMC Infectious Diseases. 18(1):1–5. doi:10.1186/s12879-018-3354-8.
  • Zhang R, Chang L, Xiao L, Zhang X, Han Q, Li N, Egan S. 2019. Diversity of the epiphytic bacterial communities associated with commercially cultivated healthy and diseased saccharina japonica during the harvest season. Journal of Applied Phycology. 32:2071–2080. doi:10.1007/s10811-019-02025-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.