0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation and identification of marine microalgae from Egyptian coasts as potential source of biodiesel: morphology and sequence-based screening

, , , , , ORCID Icon & ORCID Icon show all
Received 01 Aug 2023, Accepted 28 May 2024, Published online: 25 Jul 2024

References

  • Abou-Shanab RAI, Matter IA, Kim SN, Oh YK, Choi J, Jeon BH. 2011. Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass Bioenergy. 35(7):3079–85. doi:10.1016/j.biombioe.2011.04.021.
  • Abu-Serie MM, Habashy NH, Attia WE. 2018. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complem Altern Med. 18:1. doi:10.1186/s12906-018-2218-5.
  • Almutairi AW. 2020. Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina. Renew Energy Water Sustain. doi:10.1007/s11356-020-08531-8.
  • Ashour M. 2020. Current and future perspectives of microalgae-aquaculture in Egypt, case study: Simaf-prototype-project. Egyptian J. Anim. Prod. 57:163–70.
  • Bock C, Krienitz L, Pröschold T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea. 11:2.
  • Borowitzka MA. 2013. High-value products from microalgae-their development and commercialisation. J Appl Phycol. 25(3):743–56. doi:10.1007/s10811-013-9983-9.
  • Cerón-García MC, González-López CV, Camacho-Rodríguez J, López-Rosales L, García-Camacho F, Molina-Grima E. 2018. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chem. 257:316–24. doi:10.1016/j.foodchem.2018.02.154.
  • Chew KW, Chia SR, Show PL, Yap YJ, Ling TC, Chang JS. 2018. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J Taiwan Inst Chem Eng. 91:332–44. doi:10.1016/j.jtice.2018.05.039.
  • Chhandama MVL, Ruatpuia JVL, Ao S, Chetia AC, Satyan KB, Rokhum SL. 2023. Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges. Energy Nexus. 12:100255. doi:10.1016/j.nexus.2023.100255.
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv. 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001.
  • Costa JAV, Freitas BCB, Santos TD, Mitchell BG, Morais MG. 2018. Open pond systems for microalgal culture. Biomass Biofuels Biochem. 199–223. doi:10.1016/B978-0-444-64192-2.00009-3.
  • Damacena R, Rochmanto AT, Yanti NWKE, Handayani S, Prihantini NB. 2020. Biomass production of indigenous strain Nostoc HS-20 in local NPK fertilizer solved in spring water of Lab. Alam FMIPA UI as alternative media for biofuel feedstock. AIP Conference Proceedings, 2255. doi:10.1063/5.0013768.
  • Dammak M, Haase SM, Miladi R, Ben Amor F, Barkallah M, Gosset D, Pichon C, Huchzermeyer B, Fendri I, Denis M et al. 2016. Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis. 15(1):209. doi:10.1186/s12944-016-0375-4.
  • De Clerck O, Guiry MD, Leliaert F, Samyn Y, Verbruggen H. 2013. Algal taxonomy: a road to nowhere? J Phycol. 49(2):215–25. doi:10.1111/jpy.12020.
  • Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. 2015. High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel. Front. Bioeng. Biotechnol. 3:53. doi:10.3389/fbioe.2015.00053.
  • Duong VT, Li Y, Nowak E, Schenk PM. 2012. Microalgae isolation and selection for prospective biodiesel production. Energies. 5(6):1835–49. doi:10.3390/en5061835.
  • El Arroussi H, Benhima R, El Mernissi N, Bouhfid R, Tilsaghani C, Bennis I, Wahby I. 2017. Screening of marine microalgae strains from Moroccan coasts for biodiesel production. Renew Energy. 113:1515–22. doi:10.1016/j.renene.2017.07.035.
  • El Shafay SM, Gaber A, Alsanie WF, Elshobary ME. 2021. Influence of nutrient manipulation on growth and biochemical constituent in anabaena variabilis and nostoc muscorum to enhance biodiesel production. Sustainability. 13:16. doi:10.3390/su13169081.
  • El-Sheekh M, Abu-Faddan M, Abo-Shady A, Nassar MZA, Labib W. 2020. Molecular identification, biomass, and biochemical composition of the marine chlorophyte Chlorella sp. MF1 isolated from Suez Bay. J Genet Eng Biotechnol. 18:1. doi:10.1186/s43141-020-00044-8.
  • El-Sheekh MM, Gheda SF, El-Sayed AEKB, Abo Shady AM, El-Sheikh ME, Schagerl M. 2019. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. Environ Sci Pollut Res. 26(18):18520–32. doi:10.1007/s11356-019-05108-y.
  • El Shimi HI, Moustafa SS. 2018. Biodiesel production from microalgae grown on domestic wastewater: Feasibility and Egyptian case study. Renew Sustain Energy Rev. 82:4238–44. doi:10.1016/j.rser.2017.05.073.
  • Gaurav K, Neeti K, Singh R. 2024. Microalgae-based biodiesel production and its challenges and future opportunities: a review. Green Technol Sustain. 2(1):100060. doi:10.1016/j.grets.2023.100060.
  • Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC. 2014. Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng. 2(1):239–59. doi:10.1016/j.jece.2013.12.019.
  • Gharib S. 1998. Phytoplan community structure in Mex Bay, Alexandria, Egypt. Egypt J Aquat Biol Fish. 2(3):81–104.
  • Goher ME, El-Monem AMA, Abdel-Satar AM, Ali MH, Hussian AEM, Napiórkowska-Krzebietke A. 2016. Biosorption of some toxic metals from aqueous solution using non-living algal cells of Chlorella vulgaris. J Elementol. 21(3):703–14. doi:10.5601/jelem.2015.20.4.1037.
  • Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF. 2016. DNA barcoding green microalgae isolated from neotropical inland waters. PLoS One. 11:2. doi:10.1371/journal.pone.0149284.
  • Hasan R, Zhang B, Wang L, Shahbazi A, Zhang B. 2014. Bioremediation of swine wastewater and biofuel potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. doi:10.13140/2.1.3348.4168.
  • Hassi M, Alouani M. 2020. Isolation and identification of marine microalgae from the Atlantic ocean on the south of Morocco. Am. J. Innov. Res. Appl. Sci. 11(1):62–7.
  • Hirsch RL, Bezdek R, Wendling R. 2005. Peaking of world oil production: impacts, mitigation, & risk management. doi:10.2172/939271.
  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4):621–39. doi:10.1111/j.1365-313X.2008.03492.x.
  • Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. www.elsevier.com/locate/enzmictec.
  • Jazzar S, Quesada-Medina J, Olivares-Carrillo P, Marzouki MN, Acién-Fernández FG, Fernández-Sevilla JM, Molina-Grima E, Smaali I. 2015. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresourc Technol. 190:281–8. doi:10.1016/j.biortech.2015.04.097.
  • Jerney J, Spilling K. 2020a. Large scale cultivation of microalgae: open and closed systems. Methods Mol Biol. 1980:1–8. doi:10.1007/7651_2018_130.
  • Jerney J, Spilling K. 2020b. Large scale cultivation of microalgae: open and closed systems. Methods Mol Biol. 1980:1–8. doi:10.1007/7651_2018_130.
  • Karpagam R, Preeti R, Ashokkumar B, Varalakshmi P. 2015. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicol Environ Safety. 121:253–7. doi:10.1016/j.ecoenv.2015.03.015.
  • Khairy HM, Hussein NR, Faragallah HM, Dorgham MM. 2014. Las comunidades fitoplanctónicas en dos áreas eutroficadas de la costa de Alejandría, Egipto. Rev Biol Marina Oceanogr. 49(2):267–77. doi:10.4067/S0718-19572014000200007.
  • Khatoon H, Banerjee S, Yusoff FM, Shariff M. 2010. Effects of salinity on the growth and proximate composition of selected tropical marine periphytic diatoms and cyanobacteria. Aquacult Res. 41(9):1348–55. doi:10.1111/j.1365-2109.2009.02423.x.
  • Kothari R, Prasad R, Kumar V, Singh DP. 2013. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresourc Technol. 144:499–503. doi:10.1016/j.biortech.2013.06.116.
  • Liu ZY, Wang GC, Zhou BC. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresourc Technol. 99(11):4717–22. doi:10.1016/j.biortech.2007.09.073.
  • Low KL, Idris A, Mohd Yusof N. 2020. Novel protocol optimized for microalgae lutein used as food additives. Food Chem. 307. doi:10.1016/j.foodchem.2019.125631.
  • MacDougall AH, Wheler BA, Flowers GE. 2011. A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. The Cryosphere. 5(4):1011–28. doi:10.5194/tc-5-1011-2011.
  • Malek A, Zullo LC, Daoutidis P. 2016. Modeling and dynamic optimization of microalgae cultivation in outdoor open ponds. Indus Eng Chem Res. 55(12):3327–37. doi:10.1021/acs.iecr.5b03209.
  • Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 14(1):217–32. doi:10.1016/j.rser.2009.07.020.
  • Mata TM, Santos J, Mendes AM, Caetano NS, Martins AA. 2014. Sustainability evaluation of biodiesel produced from microalgae Chlamydomonas sp grown in brewery wastewater. Chem Eng Trans. 37:823–8. doi:10.3303/CET1437138.
  • Metzger P, Largeau C. 2005. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol. 66(5):486–96. doi:10.1007/s00253-004-1779-z.
  • Miao X, Wu Q, Yang C. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrol. 71(2):855–63. doi:10.1016/j.jaap.2003.11.004.
  • Morowvat MH, Rasoul-Amini S, Ghasemi Y. 2010. Chlamydomonas as a “new” organism for biodiesel production. Bioresourc Technol. 101(6):2059–62. doi:10.1016/j.biortech.2009.11.032.
  • Mostafa SSM, El-Gendy NS. 2017. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arab J Chem. 10:S2040–S2050. doi:10.1016/j.arabjc.2013.07.034.
  • Neupert J, Karcher D, Bock R. 2009. Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J. 57(6):1140–50. doi:10.1111/j.1365-313X.2008.03746.x.
  • Prasad A, Sivagurulingam A, Sivanandi P, Pandian S. 2021. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal. doi:10.1007/s11356-021-16163-9/Published.
  • Rahman SHA, Razek FAA, Abou Zeid AE, Ashour M. 2010. Optimum growth conditions of three isolated diatom species; Skelatonema costatum, Chaetoceros calcitrans and Detonulla confervacea and their utilization as feed for marine penaeid shrimp larvae. Egypt J Aquat Res. 36:1.
  • Rippka E, Deruelles J, Waterbury NB. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen MicrobioZogy. 111.
  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 102(1):100–12. doi:10.1002/bit.22033.
  • Rusydi R, Rusydi R, Yakupitiyage A, Gallardo WG, Dabbadie L, Anal AK. 2015. Potential of nostoc muscorum cultured in BG-II medium as biodiesel feedstock source: evaluation of nutrient requirement for culture and its daily lipid content. KnE Life Sci. 2(1):103. doi:10.18502/kls.v1i0.93.
  • Salehzadeh A, Naeemi AS. 2017. Biodiesel production from Anabaena variabilis cyanobacterium. Indian J Geo Marine Sci. 46:2.
  • Sarpal AS, Teixeira CMLL, Singh A, Costa ICR. 2023. Cultivation of Chlorella vulgaris in wastewater: biodiesel potential and wastewater remediation cultivation of Chlorella vulgaris in wastewater: biodiesel potential and waste water remediation. doi:10.21203/rs.3.rs-3177891/v1.
  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res. 1(1):20–43. doi:10.1007/s12155-008-9008-8.
  • Schuelter AR, Kroumov AD, Hinterholz CL, Fiorini A, Trigueros DEG, Vendruscolo EG, Zaharieva MM, Módenes AN. 2019. Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochem Eng J. 144:28–39. doi:10.1016/j.bej.2019.01.007.
  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP. 2015. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 82(3):523–31. doi:10.1111/tpj.12780.
  • Serediak N, Huynh M. 2011. Algae identification lab guide : accompanying manual to the algae identification field guide. Ottawa (ON): Agriculture and Agri-Food Canada.
  • Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M. 2018. Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol. 30(1):197–213. doi:10.1007/s10811-017-1234-z.
  • Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. A look back at the U.S. department of energy’s aquatic species program-biodiesel from algae. Golden (CO): National Renewable Energy Program.
  • Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin ES, Sim SJ. 2019. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresourc Technol. 271:368–74. doi:10.1016/j.biortech.2018.09.121.
  • Singh R, Kumar A, Sharma YC. 2019. Biodiesel synthesis from microalgae (Anabaena PCC 7120) by using barium titanium oxide (Ba2TiO4)solid base catalyst. Bioresourc Technol. 287. doi:10.1016/j.biortech.2019.121357.
  • Song D, Fu J, Shi D. 2008. Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol. 24:341–8. doi:10.1016/S1872-2075(08)60016-3.
  • Sosik HM, Olson RJ. 2007. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods. 5(6):204–16. doi:10.4319/lom.2007.5.204.
  • Spilling Editor K. 2018. Biofuels from algae methods and protocols methods in molecular biology 1980. http://www.springer.com/series/7651.
  • Tang H, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO. 2011. Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng. 108(10):2280–7. doi:10.1002/bit.23160.
  • Tiwari V, Das A, Thakur S, Trivedi RK. 2021. Molecular characterization of blue-green algae (Anabaena constricta) and comparative studies of biodiesel production from other species. Indian J Chem Technol. 28(2):150–62.
  • Torzillo G, Vonshak A. 2013. Environmental stress physiology with reference to mass cultures. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: applied phycology and biotechnology: second edition. Wiley; p. 90–113. doi:10.1002/9781118567166.ch6.
  • Tredici MR. 2010. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels. 1(1):143–62. doi:10.4155/bfs.09.10.
  • Wahby I, Rhazi L, Hassikou R, Arahou M. 2018. Microalgal biomass: a promising source of clean energy in Morocco. Appl J Envir Eng Sci. 4(2):109–22. http://www.biopetroleo.com
  • Zein M, Nassar A, Khairy HM. 2014. Checklist of phytoplankton species in the Egyptian waters of the red sea and some surrounding habitats (1990-2010). Rev Biol. 4:23. www.sciencedomain.org
  • Zhang P, Wei S, Zhang J, Zhong H, Wang S, Jian Q. 2022. Seasonal distribution, composition, and inventory of plastic debris on the Yugang Park Beach in Zhanjiang Bay, South China Sea. Int J Environ Res Public Health. 19:8. doi:10.3390/ijerph19084886.
  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R. 2011. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol. 102:6909–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.