0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in carbon sequestration technology using marine microalgae

, , , &
Received 20 Jun 2023, Accepted 17 Jun 2024, Published online: 25 Jul 2024

References

  • Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. 2021. Unconventional high-value products from microalgae: A review. Bioresource Technology. 329:124895. doi:10.1016/j.biortech.2021.124895
  • Arashiro LT, Josa I, Ferrer I, Van Hulle SW, Rousseau DP, Garfí M. 2022. Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas. Science of The Total Environment. 847:157615. doi:10.1016/j.scitotenv.2022.157615
  • Ayatollahi SZ, Esmaeilzadeh F, Mowla D. 2021. Integrated CO2 capture, nutrients removal and biodiesel production using Chlorella vulgaris. Journal of Environmental Chemical Engineering. 9(2):104763. doi:10.1016/j.jece.2020.104763
  • Baek SH, Kim D, Son M, Yun SM, Kim YO. 2015. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuarine, Coastal and Shelf Science. 163:265–78. doi:10.1016/j.ecss.2014.12.035
  • Barton S, Jenkins J, Buckling A, Schaum C-E, Smirnoff N, Raven JA, Yvon-Durocher G. 2020. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecology Letters. 23(4):722–33. doi:10.1111/ele.13469
  • Basu S, Mackey KR. 2018. Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability. 10(3):869. doi:10.3390/su10030869
  • Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, Tester JW, Archibald I, Granados J, Greene CH. 2015. Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Research. 10:266–79. doi:10.1016/j.algal.2015.04.017
  • Belohlav V, Uggetti E, García J, Jirout T, Kratky L, Díez-Montero R. 2021. Assessment of hydrodynamics based on Computational Fluid Dynamics to optimize the operation of hybrid tubular photobioreactors. Journal of Environmental Chemical Engineering. 9(5):105768. doi:10.1016/j.jece.2021.105768
  • Bergkvist J, Klawonn I, Whitehouse MJ, Lavik G, Brüchert V, Ploug H. 2018. Turbulence simultaneously stimulates small-and large-scale CO2 sequestration by chain-forming diatoms in the sea. Nature communications. 9(1):3046. doi:10.1038/s41467-018-05149-w
  • Bhatt A, Khanchandani M, Rana MS, Prajapati SK. 2022. Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production. 370:133456. doi:10.1016/j.jclepro.2022.133456
  • Blanken W, Cuaresma M, Wijffels RH, Janssen M. 2013. Cultivation of microalgae on artificial light comes at a cost. Algal Research. 2(4):333–40. doi:10.1016/j.algal.2013.09.004
  • Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M. 2005. Response of diatoms distribution to global warming and potential implications: A global model study. Geophysical Research Letters. 32:19. doi:10.1029/2005GL023653
  • Branco-Vieira M, Mata TM, Martins AA, Freitas MAV, Caetano NS. 2020. Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Reports. 6:325–32. doi:10.1016/j.egyr.2020.11.156
  • Buono S, Colucci A, Angelini A, Langellotti AL, Massa M, Martello A, Fogliano V, Dibenedetto A. 2016. Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. Journal of Applied Phycology. 28:3179–92. doi:10.1007/s10811-016-0876-6
  • Bussa M, Eisen A, Zollfrank C, Röder H. 2019. Life cycle assessment of microalgae products: state of the art and their potential for the production of polylactid acid. Journal of Cleaner Production. 213:1299–312. doi:10.1016/j.jclepro.2018.12.048
  • Butler T, Kapoore RV, Vaidyanathan S. 2020. Phaeodactylum tricornutum: a diatom cell factory. Trends in Biotechnology. 38(6):606–22. doi:10.1016/j.tibtech.2019.12.023
  • Carvalho AP, Meireles LA, Malcata FX. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress. 22(6):1490–506. doi:10.1002/bp060065r
  • Chen C-Y, Ho S-H, Liu C-C, Chang J-S. 2017. Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers. 79:88–96. doi:10.1016/j.jtice.2017.04.020
  • Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K. 2013. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresource Technology. 136:496–501. doi:10.1016/j.biortech.2013.03.072
  • Cheng J, Xu J, Lu H, Ye Q, Liu J, Zhou J. 2018. Generating cycle flow between dark and light zones with double paddlewheels to improve microalgal growth in a flat plate photo-bioreactor. Bioresource Technology. 261:151–7. doi:10.1016/j.biortech.2018.04.022
  • Chiranjeevi P, Mohan SV. 2016. Critical parametric influence on microalgae cultivation towards maximizing biomass growth with simultaneous lipid productivity. Renewable Energy. 98:64–71. doi:10.1016/j.renene.2016.03.063
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnology advances. 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001
  • Church MJ, Cullen JJ, Karl DM. 2019. Approaches to measuring marine primary production. In: Cochran JK, Bokuniewicz HJ, Yager PL, editor. Encyclopedia of ocean sciences (third edition). Oxford: Academic Press; p. 484–91.
  • Clippinger JN, Davis RE. 2019. Techno-economic analysis for the production of algal biomass via closed photobioreactors: future cost potential evaluated across a range of cultivation system designs. Golden: National Renewable Energy Lab.(NREL).
  • Das P, Quadir MA, Chaudhary AK, Thaher MI, Khan S, Alghazal G, Al-Jabri H. 2018. Outdoor continuous cultivation of self-settling marine cyanobacterium chroococcidiopsis sp. Industrial Biotechnology. 14(1):45–53. doi:10.1089/ind.2017.0019
  • De Bhowmick G, Sarmah AK, Sen R. 2019. Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Science of the Total Environment. 650:2467–82. doi:10.1016/j.scitotenv.2018.10.002
  • de Godos I, Mendoza JL, Acién FG, Molina E, Banks CJ, Heaven S, Rogalla F. 2014. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresource Technology. 153:307–14. doi:10.1016/j.biortech.2013.11.087
  • de Morais MG, Costa JAV. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management. 48(7):2169–73. doi:10.1016/j.enconman.2006.12.011
  • de Souza Celente G, de Cassia de Souza Schneider R, Julich J, Rizzetti TM, Lobo EA, Sui Y. 2023. Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by Dunaliella salina and Dunaliella tertiolecta. The International Journal of Life Cycle Assessment. 28:1–14.
  • Deniz I. 2020. Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. Bioresource Technology. 310:123434. doi:10.1016/j.biortech.2020.123434
  • Deprá MC, Mérida LG, de Menezes CR, Zepka LQ, Jacob-Lopes E. 2019. A new hybrid photobioreactor design for microalgae culture. Chemical Engineering Research and Design. 144:1–10. doi:10.1016/j.cherd.2019.01.023
  • Dineshbabu G, Uma VS, Mathimani T, Prabaharan D, Uma L. 2020. Elevated CO2 impact on growth and lipid of marine cyanobacterium Phormidium valderianum BDU 20041–towards microalgal carbon sequestration. Biocatalysis and Agricultural Biotechnology. 25:101606. doi:10.1016/j.bcab.2020.101606
  • Doran PM. 1995. Bioprocess engineering principles. Waltham (MA): Elsevier.
  • Eze CN, Ogbonna JC, Ogbonna IO, Aoyagi H. 2017. A novel flat plate air-lift photobioreactor with inclined reflective broth circulation guide for improved biomass and lipid productivity by Desmodesmus subspicatus LC172266. Journal of Applied Phycology. 29(6):2745–54. doi:10.1007/s10811-017-1153-z
  • Falkowski P. 2012. Ocean science: the power of plankton. Nature. 483(7387):S17–S20. doi:10.1038/483S17a
  • Fernández FA, Sevilla JF, Pérez JS, Grima EM, Chisti Y. 2001. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chemical Engineering Science. 56(8):2721–32. doi:10.1016/S0009-2509(00)00521-2
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 281(5374):237–40. doi:10.1126/science.281.5374.237
  • Friedlingstein P, O’sullivan M, Jones M, Andrew R, Hauck J, Olsen A, Peters G, Peters W, Pongratz J, Sitch S. 2020. Global carbon budget 2020. Earth System Science Data. 12(4):3269–340. doi:10.5194/essd-12-3269-2020
  • Fu J, Huang Y, Liao Q, Zhu X, Xia A, Zhu X, Chang J-S. 2021. Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with airfoil-shaped deflectors. Bioresource Technology. 337:125355. doi:10.1016/j.biortech.2021.125355
  • Gao B, Xia S, Lei X, Zhang C. 2018. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem. Journal of Applied Phycology. 30(1):215–29. doi:10.1007/s10811-017-1180-9
  • Gaysina LA, Saraf A, Singh P. 2019. Cyanobacteria in Diverse Habitats. In: A.K. Mishra, D.N. Tiwari, editors. Cyanobacteria. Varanasi (UP): Academic Press; p. 11–14.
  • Guo S, Sun J, Zhao Q, Feng Y, Huang D, Liu S. 2016. Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: a comparative study between Prorocentrum dentatum and Skeletonema dorhnii Bloom. Journal of Marine Systems. 154:5–14. doi:10.1016/j.jmarsys.2015.07.003
  • Gupta PL, Lee S-M, Choi H-J. 2015. A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology and Biotechnology. 31(9):1409–17. doi:10.1007/s11274-015-1892-4
  • Hashemi A, Moslemi M, Pajoum Shariati F, Delavari Amrei H. 2020. Beta-carotene production within Dunaliella salina cells under salt stress condition in an indoor hybrid helical-tubular photobioreactor. The Canadian Journal of Chemical Engineering. 98(1):69–74. doi:10.1002/cjce.23577
  • Herold C, Ishika T, Nwoba EG, Tait S, Ward A, Moheimani NR. 2021. Biomass production of marine microalga Tetraselmis suecica using biogas and wastewater as nutrients. Biomass and Bioenergy. 145:105945. doi:10.1016/j.biombioe.2020.105945
  • Heyduk K, Moreno-Villena JJ, Gilman IS, Christin P-A, Edwards EJ. 2019. The genetics of convergent evolution: insights from plant photosynthesis. Nature Reviews Genetics. 20(8):485–93. doi:10.1038/s41576-019-0107-5
  • Hopkinson BM, Dupont CL, Matsuda Y. 2016. The physiology and genetics of CO2 concentrating mechanisms in model diatoms. Current Opinion in Plant Biology. 31:51–7. doi:10.1016/j.pbi.2016.03.013
  • Huang J, Wan M, Jiang J, Zhang A, Zhang D. 2021. Evaluating the effects of geometry and arrangement parameter of flat panel photobioreactor on microalgae biomass production and economic performance in China. Algal Research. 57:102343. doi:10.1016/j.algal.2021.102343
  • Huang Q, Jiang F, Wang L, Yang C. 2017. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 3(3):318–29. doi:10.1016/J.ENG.2017.03.020
  • Iluz D, Abu-Ghosh S. 2016. A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency. Energy Conversion and Management. 126:767–73. doi:10.1016/j.enconman.2016.08.045
  • Jakobsen HH, Blanda E, Staehr PA, Højgård JK, Rayner TA, Pedersen MF, Jepsen PM, Hansen BW. 2015. Development of phytoplankton communities: implications of nutrient injections on phytoplankton composition, pH and ecosystem production. Journal of Experimental Marine Biology and Ecology. 473:81–9. doi:10.1016/j.jembe.2015.08.011
  • Jaubert M, Bouly J-P, d’Alcalà MR, Falciatore A. 2017. Light sensing and responses in marine microalgae. Current Opinion in Plant Biology. 37:70–7. doi:10.1016/j.pbi.2017.03.005
  • Jiang J, Huang J, Zhang H, Zhang Z, Du Y, Cheng Z, Feng B, Yao T, Zhang A, Zhao Z. 2022. Potential integration of wastewater treatment and natural pigment production by Phaeodactylum tricornutum: microalgal growth, nutrient removal, and fucoxanthin accumulation. Journal of Applied Phycology. 34(3):1411–22. doi:10.1007/s10811-022-02700-7
  • Kazbar A, Cogne G, Urbain B, Marec H, Le-Gouic B, Tallec J, Takache H, Ismail A, Pruvost J. 2019. Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Research. 39:101432. doi:10.1016/j.algal.2019.101432
  • Ke Z, Xie P, Guo L. 2019. Ecological restoration and factors regulating phytoplankton community in a hypertrophic shallow lake, Lake Taihu, China. Acta Ecologica Sinica. 39(1):81–8. doi:10.1016/j.chnaes.2018.05.004
  • Kim K, Kim Z-H, Park H, Lee Y, Kim K, Kang S, Lim S-M, Lee C-G. 2020. Enhancing microalgal biomass productivity in floating photobioreactors with semi-permeable membranes grafted with 4-hydroxyphenethyl bromide. Macromolecular Research. 28(2):145–51. doi:10.1007/s13233-020-8023-2
  • Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama S-Y, Yamaberi K. 1994. CO2 fixation and oil production using micro-algae. Journal of Fermentation and Bioengineering. 78(6):479–82. doi:10.1016/0922-338X(94)90052-3
  • Kong W, Shen B, Lyu H, Kong J, Ma J, Wang Z, Feng S. 2021. Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. Journal of Cleaner Production. 292:125975. doi:10.1016/j.jclepro.2021.125975
  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D. 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology. 102(8):4945–53. doi:10.1016/j.biortech.2011.01.054
  • Lai X. 2020. Study on the fixation of CO2 in a swirl plate microalgal photosynthetic reactor by jet aeration [master]. Zhejiang University.
  • Leu S, Boussiba S. 2014. Advances in the production of high-value products by microalgae. Industrial Biotechnology. 10(3):169–83. doi:10.1089/ind.2013.0039
  • Levasseur W, Perré P, Pozzobon V. 2020. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology advances. 41:107545. doi:10.1016/j.biotechadv.2020.107545
  • Li D, Zhao Q. 2023. Study of carbon fixation and carbon partitioning of evolved Chlorella sp.’s strain under different carbon dioxide conditions. Biocatalysis and Agricultural Biotechnology. 48:102655. doi:10.1016/j.bcab.2023.102655
  • Liu D, Liberton M, Hendry JI, Aminian-Dehkordi J, Maranas CD, Pakrasi HB. 2021. Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology. 67:1–6. doi:10.1016/j.copbio.2020.09.011
  • Liu J, Xu R. 2017. Development of Chinese microalgae resources for 30 years metamorphosis. Journal of Biology. 34(02):9–15.
  • Liu Y, Liu X, Cui Y, Yuan W. 2022. Ultrasound for microalgal cell disruption and product extraction: a review. Ultrasonics Sonochemistry. 87:106054. doi:10.1016/j.ultsonch.2022.106054
  • Liu Y, Zhang C, Sun S, Sun J, Yang G. 2019. The carbon sequestration potential of macroalgae in the reef zone of Zhanjiang Shore. Journal of Guangdong Ocean University. 39(05):78–84.
  • Long BM, Rae BD, Rolland V, Förster B, Price GD. 2016. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. Current Opinion in Plant Biology. 31:1–8. doi:10.1016/j.pbi.2016.03.002
  • Mantzorou A, Ververidis F. 2019. Microalgal biofilms: a further step over current microalgal cultivation techniques. Science of the Total Environment. 651:3187–201. doi:10.1016/j.scitotenv.2018.09.355
  • Matsunaga T, Takeyama H, Miyashita H, Yokouchi H. 2005. Marine microalgae. Marine Biotechnology. 96:165–88. doi:10.1007/b135784
  • Mayyas M, Nekouei RK, Sahajwalla V. 2019. Valorization of lignin biomass as a carbon feedstock in steel industry: iron oxide reduction, steel carburizing and slag foaming. Journal of Cleaner Production. 219:971–80. doi:10.1016/j.jclepro.2019.02.114
  • Merz CR, Arora N, Welch M, Lo E, Philippidis GP. 2023. Microalgal cultivation characteristics using commercially available air-cushion packaging material as a photobioreactor. Scientific Reports. 13(1):3792. doi:10.1038/s41598-023-30080-6
  • Molino A, Mehariya S, Karatza D, Chianese S, Iovine A, Casella P, Marino T, Musmarra D. 2019. Bench-scale cultivation of microalgae Scenedesmus almeriensis for CO2 capture and lutein production. Energies. 12(14):2806. doi:10.3390/en12142806
  • Morales M, Sánchez L, Revah S. 2018. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiology Letters. 365(3):fnx262. doi:10.1093/femsle/fnx262
  • Morita M, Watanabe Y, Okawa T, Saiki H. 2001. Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnology and Bioengineering. 74(2):136–44. doi:10.1002/bit.1103
  • Mu D, Xin C, Zhou W. 2020. Chapter 18 – life cycle assessment and techno-economic analysis of algal biofuel production. In: Yousuf A, editor. Microalgae cultivation for biofuels production. Sylhet (BD): Academic Press; p. 281–92.
  • Murakami M, Ikenouchi M. 1997. The biological CO2 fixation and utilization project by rite (2) – screening and breeding of microalgae with high capability in fixing CO2. Energy Conversion and Management. 38:S493–S497. doi:10.1016/S0196-8904(96)00316-0
  • Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G. 2021. Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology. 341:1–20. doi:10.1016/j.jbiotec.2021.09.003
  • Nhat PVH, Ngo H, Guo W, Chang S, Nguyen DD, Nguyen P, Bui X-T, Zhang X, Guo J. 2018. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Bioresource Technology. 256:491–501. doi:10.1016/j.biortech.2018.02.031
  • Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, Mishra S. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology. 244:1216–26. doi:10.1016/j.biortech.2017.05.058
  • Passow U, Carlson CA. 2012. The biological pump in a high CO2 world. Marine Ecology Progress Series. 470:249–71. doi:10.3354/meps09985
  • Piiparinen J, Barth D, Eriksen NT, Teir S, Spilling K, Wiebe MG. 2018. Microalgal CO2 capture at extreme pH values. Algal Research. 32:321–8. doi:10.1016/j.algal.2018.04.021
  • Posten C, Chen SF. 2016. Microalgae biotechnology.
  • Prasad R, Gupta SK, Shabnam N, Oliveira CYB, Nema AK, Ansari FA, Bux F. 2021. Role of microalgae in global CO2 sequestration: physiological mechanism, recent development, challenges, and future prospective. Sustainability. 13(23):13061. doi:10.3390/su132313061
  • Priyadharsini P, Nirmala N, Dawn S, Baskaran A, SundarRajan P, Gopinath K, Arun J. 2022. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: review on CO2 bio-fixation pathways modifications. Algal Research. 66:102810. doi:10.1016/j.algal.2022.102810
  • Pulz O, Broneske J, Waldeck P. 2013. IGV GmbH Experience Report, Industrial Production of Microalgae Under Controlled Conditions: Innovative Prospects. In: Richmond A, Hu Q, editors. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Chichester (WS): John Wiley & Sons, Ltd; p. 445–60.
  • Ranganathan P, Pandey AK, Sirohi R, Hoang AT, Kim SH. 2022. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: design and applications. Bioresource Technology. 350:126920. doi:10.1016/j.biortech.2022.126920
  • Ras M, Steyer J-P, Bernard O. 2013. Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in Environmental Science and Biotechnology. 12(2):153–64. doi:10.1007/s11157-013-9310-6
  • Rebolledo-Oyarce J, Mejía-López J, García G, Rodríguez-Córdova L, Sáez-Navarrete C. 2019. Novel photobioreactor design for the culture of Dunaliella tertiolecta–impact of color in the growth of microalgae. Bioresource Technology. 289:121645. doi:10.1016/j.biortech.2019.121645
  • Richardson TL. 2019. Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean. Annual Review of Marine Science. 11:57-74.
  • Rodrigues Dias R, Deprá MC, Ragagnin de Menezes C, Queiroz Zepka L, Jacob-Lopes E. 2023. The high-value product, bio-waste, and eco-friendly energy as the tripod of the microalgae biorefinery: connecting the dots. Sustainability. 15(15):11494. doi:10.3390/su151511494
  • Rodríguez-Zuñiga D, Méndez-Zavala A, Solís-Quiroz O, Montañez J, Morales-Oyervides L, Benavente-Valdés J. 2023. Microalgae as Cell Factories for Biofuel and Bioenergetic Precursor Molecules. In: Upadhyay SK, Singh SP, editors. Plants as Bioreactors for Industrial Molecules. Chichester (WS): John Wiley & Sons Ltd; p. 299–316.
  • Ruiz J, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ. 2016. Towards industrial products from microalgae. Energy & Environmental Science. 9(10):3036–43.
  • Sadvakasova AK, Kossalbayev BD, Bauenova MO, Balouch H, Leong YK, Zayadan BK, Huang Z, Alharby HF, Tomo T, Chang J-S. 2023. Microalgae as a key tool in achieving carbon neutrality for bioproduct production. Algal Research. 72:103096. doi:10.1016/j.algal.2023.103096
  • San Juan JLG, Aviso KB, Tan RR, Sy CL. 2019. A multi-objective optimization model for the design of biomass co-firing networks integrating feedstock quality considerations. Energies. 12(12):2252. doi:10.3390/en12122252
  • Sarmiento JL, Gruber N. 2002. Sinks for anthropogenic carbon. Physics Today. 55(8):30–6. doi:10.1063/1.1510279
  • Saxena A, Prakash K, Phogat S, Singh PK, Tiwari A. 2020. Inductively coupled plasma nanosilica based growth method for enhanced biomass production in marine diatom algae. Bioresource Technology. 314:123747. doi:10.1016/j.biortech.2020.123747
  • Schade S, Meier T. 2021. Techno-economic assessment of microalgae cultivation in a tubular photobioreactor for food in a humid continental climate. Clean Technologies and Environmental Policy. 23:1475–92. doi:10.1007/s10098-021-02042-x
  • Schulze PS, Guerra R, Pereira H, Schüler LM, Varela JC. 2017. Flashing LEDs for microalgal production. Trends in Biotechnology. 35(11):1088–101. doi:10.1016/j.tibtech.2017.07.011
  • Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. 2020. Diatoms for carbon sequestration and bio-based manufacturing. Biology. 9(8):217. doi:10.3390/biology9080217
  • Sforza E, Pastore M, Franke SM, Barbera E. 2020. Modeling the oxygen inhibition in microalgae: an experimental approach based on photorespirometry. New Biotechnology. 59:26–32. doi:10.1016/j.nbt.2020.06.003
  • Shi R, Handler RM, Shonnard DR. 2019. Life cycle assessment of novel technologies for algae harvesting and oil extraction in the renewable diesel pathway. Algal Research. 37:248–59. doi:10.1016/j.algal.2018.12.005
  • Singh SP, Pathak J, Sinha RP. 2017. Cyanobacterial factories for the production of green energy and value-added products: an integrated approach for economic viability. Renewable and Sustainable Energy Reviews. 69:578–95. doi:10.1016/j.rser.2016.11.169
  • Sirohi R, Pandey AK, Ranganathan P, Singh S, Udayan A, Awasthi MK, Hoang AT, Chilakamarry CR, Kim SH, Sim SJ. 2022. Design and applications of photobioreactors – A review. Bioresource Technology. 349:126858. doi:10.1016/j.biortech.2022.126858
  • Sudhakar K, Suresh S, Premalatha M. 2011. An overview of CO2 mitigation using algae cultivation technology. International Journal of Chemical Research. 3(3):110–7. doi:10.9735/0975-3699.3.3.110-117
  • Sun C-H, Fu Q, Liao Q, Xia A, Huang Y, Zhu X, Reungsang A, Chang H-X. 2019. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy. 171:1033–45. doi:10.1016/j.energy.2019.01.074
  • The Nottingham Microalgal Biorefinery Carbon Capture and Utilisation. 2007–2015. Accessed 2022 Nov 22. https://photobioreactor.co.uk/Nottingham-carbon-capture-microalgae-biorefinery.html.
  • Tredici MR, Zittelli GC. 1998. Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnology and Bioengineering. 57(2):187–97. doi:10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J
  • Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Aumont O, Bittner L, Dugdale R, Finkel Z, Iudicone D. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience. 11(1):27–37. doi:10.1038/s41561-017-0028-x
  • Vale MA, Ferreira A, Pires JC, Gonçalves AL. 2020. CO2 capture using microalgae. In: Rahimpour MR, Makarem MA, Farsi M, editors. Advances in Carbon Capture. Cambridge (UK): Woodhead Publishing; p. 381–405.
  • Walter B, Peters J, van Beusekom JE. 2017. The effect of constant darkness and short light periods on the survival and physiological fitness of two phytoplankton species and their growth potential after re-illumination. Aquatic Ecology. 51:591–603. doi:10.1007/s10452-017-9638-z
  • Wang B, Lan CQ, Horsman M. 2012. Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances. 30(4):904–12. doi:10.1016/j.biotechadv.2012.01.019
  • Wang L, You X. 2013. Light-gradient mixing performance improvement of the flat plate photobioreactor with waved baffles. Chemical and Biochemical Engineering Quarterly. 27(2):211–8.
  • Wang R, Liu X, Wu J, Wai T-C, Shen P, Lam PK. 2020. Long-term variations of phytoplankton community in relations to environmental factors in Deep Bay, People’s Republic of China, from 1994 to 2016. Marine Pollution Bulletin. 153:111010. doi:10.1016/j.marpolbul.2020.111010
  • Wang S, Wu S, Yang G, Pan K, Wang L, Hu Z. 2021. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin. Biotechnology Advances. 53:107865.
  • Wang Z, Wen X, Xu Y, Ding Y, Geng Y, Li Y. 2018. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG1 via CO2-regulated pH in indoor and outdoor open reactors. Science of the Total Environment. 619:827–33. doi:10.1016/j.scitotenv.2017.10.127
  • Wei L, El Hajjami M, Shen C, You W, Lu Y, Li J, Jing X, Hu Q, Zhou W, Poetsch A. 2019. Transcriptomic and proteomic responses to very low CO2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica. Biotechnology for Biofuels. 12(1):1–21. doi:10.1186/s13068-018-1346-y
  • Whitton R, Le Mével A, Pidou M, Ometto F, Villa R, Jefferson B. 2016. Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research. 91:371–8. doi:10.1016/j.watres.2015.12.054
  • Wu W, Lei Y-C, Chang J-S. 2019a. Life cycle assessment of upgraded microalgae-to-biofuel chains. Bioresource Technology. 288:121492. doi:10.1016/j.biortech.2019.121492
  • Wu Z, Liu J, Huang J, Cai Y, Chen Y, Li K. 2019b. Do the key factors determining phytoplankton growth change with water level in China’s largest freshwater lake? Ecological Indicators. 107:105675. doi:10.1016/j.ecolind.2019.105675
  • Xu J, Cheng J, Lai X, Zhang X, Yang W, Park J-Y, Kim H, Xu L. 2020. Enhancing microalgal biomass productivity with an optimized flow field generated by double paddlewheels in a flat plate photoreactor with CO2 aeration based on numerical simulation. Bioresource Technology. 314:123762. doi:10.1016/j.biortech.2020.123762
  • Xu X, Gu X, Wang Z, Shatner W, Wang Z. 2019. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable and Sustainable Energy Reviews. 110:65–82. doi:10.1016/j.rser.2019.04.050
  • Xue Y, Liu Z, Wang H, Zhao J. 2020. Effects of ocean acidification on the regulatory mechanism of key physiological processes of microalgae and environmental factors. Chinese Journal of Applied Ecology. 31(11):3969–78.
  • Yadav G, Mathimani T, Sekar M, Sindhu R, Pugazhendhi A. 2021. Strategic evaluation of limiting factors affecting algal growth – an approach to waste mitigation and carbon dioxide sequestration. Science of the Total Environment. 796:149049. doi:10.1016/j.scitotenv.2021.149049
  • Yan G, Liu D, Zhang J, Liu X, Gong D. 2018. Effects of different light conditions on phytoplankton biomass and diversity. Journal of Hydroecology. 39(01):37–43.
  • Yang A, Zhao L, Song S, Liu J, He Y, Wang Y. 2023. Response of Heterosigma akashiwo to CO2 concentration, temperature and nutrient changes. Journal of East China Normal University. 3:1–10.
  • Yang R, Wei D, Xie J. 2020. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Critical Reviews in Biotechnology. 40(7):993–1009. doi:10.1080/07388551.2020.1805402
  • Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology. 101(1):S71–S74. doi:10.1016/j.biortech.2009.03.030
  • Yustinadiar N, Manurung R, Suantika G. 2020. Enhanced biomass productivity of microalgae Nannochloropsis sp. in an airlift photobioreactor using low-frequency flashing light with blue LED. Bioresources and Bioprocessing. 7(1):1–15. doi:10.1186/s40643-020-00331-9
  • Zhang H, Zeng R, Chen D, Liu J. 2016. A pivotal role of vacuolar H+-ATPase in regulation of lipid production in Phaeodactylum tricornutum. Scientific Reports. 6(1):31319. doi:10.1038/srep31319
  • Zhang H, Zhu R, Tan Y, Deng Q, Zhou H, Gao B, Zhang C. 2022. Research progress in the regulation of LED light quality on microalgal growth and accumulation of target products. Chinese Journal of Bioprocess Engineering. 20(02):125–36.
  • Zhang J, Wang L, Zhang X, Xie G, Jia G, Zhang J, Yang X. 2021. Blue light-emitting diodes based on halide perovskites: recent advances and strategies. Materials Today. 51:222–46. doi:10.1016/j.mattod.2021.10.023
  • Zhao P. 2015. Mechanisms and pathways of response to different environmental factors in Phaeodactyla trichonata [doctor]. The Institute of Oceanology, Chinese Academy of Sciences.
  • Zhao Q, Huang H. 2021. Adaptive evolution improves algal strains for environmental remediation. Trends in Biotechnology. 39(2):112–5. doi:10.1016/j.tibtech.2020.08.009
  • Zhou W, Ruan R. 2014. Biological mitigation of carbon dioxide via microalgae: recent development and future direction. Scientia Sinica Chimica. 44(1):63–78. doi:10.1360/032013-256
  • Zhu X, Liu F, Fan J, Li X, Wang Z. 2018. Research status and prospect of microalgae bioenergy. Advances in New and Renewable Energy. 6(6):467–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.