1,977
Views
3
CrossRef citations to date
0
Altmetric
Articles

Envisioning Building-as-Energy-Service in the European context. From a literature review to a conceptual framework

ORCID Icon &
Pages 495-520 | Received 31 May 2020, Accepted 07 Mar 2021, Published online: 07 Apr 2021

References

  • Abdelkafi, N., & Täuscher, K. (2016). Business models for sustainability from a system dynamics perspective. Organisation and Environment, 29(1), 74–96. doi:10.1177/1086026615592930
  • Andriamamonjy, A., Klein, R., & Saelens, D. (2019). Automated grey box model implementation using BIM and modelica. Energy and Buildings, 188–189, 209–225. doi:10.1016/j.enbuild.2019.01.046
  • Arapostathis, S., Carlsson-Hyslop, A., Pearson, P. J. G., Thornton, J., Gradillas, M., Laczay, S., … Wallis, S. (2013). Governing transitions: Cases and insights from two periods in the history of the UK gas industry. Energy Policy, 52, 25–44. doi:10.1016/j.enpol.2012.08.016
  • Attia, S., Eleftheriou, P., Xeni, F., Morlot, R., Ménézo, C., Kostopoulos, V., … Hidalgo-Betanzos, J. M. (2017). Overview and future challenges of nearly zero energy buildings (NZEB) design in Southern Europe. Energy and Buildings, 155, 439–458. doi:10.1016/j.enbuild.2017.09.043
  • Azcárate-Aguerre, J. F., Den Heijer, A., & Klein, T. (2018). Integrated faades as a product-service system -business process innovation to accelerate integral product implementation. Journal of Facade Design and Engineering, 6(1), 41–56. doi:10.7480/jfde.2018.1.1840
  • Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). Social barriers to the adoption of smart homes. Energy Policy, 63, 363–374. doi:10.1016/j.enpol.2013.08.043
  • Baños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimisation methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15, 1753–1766. doi:10.1016/j.rser.2010.12.008
  • Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., … Pasha, M. (2016). Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 30, 500–521. doi:10.1016/j.aei.2016.07.001
  • Bollinger, L. A., Davis, C. B., Evins, R., Chappin, E. J. L., & Nikolic, I. (2018). Multi-model ecologies for shaping future energy systems: Design patterns and development paths. Renewable and Sustainable Energy Reviews, 82, 3441–3451. doi:10.1016/j.rser.2017.10.047
  • Bolton, R., & Foxon, T. J. (2015). Infrastructure transformation as a socio-technical process – implications for the governance of energy distribution networks in the UK. Technological Forecasting and Social Change, 90(PB), 538–550. doi:10.1016/j.techfore.2014.02.017
  • Bowen, W. M., Park, S., & Elvery, J. A. (2013). Empirical estimates of the influence of renewable energy portfolio standards on the green economies of states. EconomicDevelopment Quarterly, 27(4), 338–351. doi:10.1177/0891242413491316
  • Brown, D. (2018). Business models for residential retrofit in the UK: A critical assessment of five key archetypes. Energy Efficiency, 11, 1497–1517. doi:10.1007/s12053-018-9629-5
  • Buffa, S., Cozzini, M., D’Antoni, M., Baratieri, M., & Fedrizzi, R. (2019). 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews, 104, 504–522. doi:10.1016/j.rser.2018.12.059
  • Bulut, M. B., Odlare, M., Stigson, P., Wallin, F., & Vassileva, I. (2016). Active buildings in smart grids. Exploring the views of the Swedish energy and buildings sectors. Energy and Buildings, 117, 185–198. doi:10.1016/j.enbuild.2016.02.017
  • Bush, R. E., Bale, C. S. E., Powell, M., Gouldson, A., Taylor, P. G., & Gale, W. F. (2017). The role of intermediaries in low carbon transitions – empowering innovations to unlock district heating in the UK. Journal of Cleaner Production, 148, 137–147. doi:10.1016/j.jclepro.2017.01.129
  • Chakuu, S., Godsell, J., & Glass, J. (2020). Supply chain productivity in construction, Transforming Construction Network Plus. Digest Series, No.3.
  • Charmaz, K. (2006). Constructing Grounded theory: A practical guide through Qualitative analysis. Thousand Oaks, CA: Sage.
  • Charmaz, K. (2008). Constructionism and the Grounded Theory method. In J. A. Holstein & J. F. Gubrium (Eds.), Handbook of constructionist research (pp. 297–412). New York: The Guilford Press.
  • Chen, G., Zhang, G., Xie, Y., & Jin, X. (2012). Overview of alliancing research and practice in the construction industry. Architectural Engineering and Design Management, 8(2), 103–119. doi:10.1080/17452007.2012.659505
  • Clauß, J., & Georges, L. (2019). Model complexity of heat pump systems to investigate the building energy flexibility and guidelines for model implementation. Applied Energy, 255, 1–16. 10.1016/j.apenergy.2019.113847
  • Cole, R. J., & Fedoruk, L. (2015). Shifting from net-zero to net-positive energy buildings. Building Research and Information, 43, 111–120. doi:10.1080/09613218.2014.950452
  • Corgnati, S. P., Fabrizio, E., Filippi, M., & Monetti, V. (2013). Reference buildings for cost optimal analysis: Method of definition and application. Applied Energy, 102, 983–993. doi:10.1016/j.apenergy.2012.06.001
  • Darby, S. J., & McKenna, E. (2012). Social implications of residential demand response in cool temperate climates. Energy Policy, 49, 759–769. doi:10.1016/j.enpol.2012.07.026
  • De Wolf, C., Pomponi, F., & Moncaster, A. (2017). Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, 140, 68–80. doi:10.1016/j.enbuild.2017.01.075
  • Engels, F., Münch, A. V., & Simon, D. (2017). One site—multiple visions: Visioneering between contrasting actors’ perspectives. NanoEthics, 11, 59–74. doi:10.1007/s11569-017-0290-9
  • European Commission.(2007). A European strategic energy technology plan (SET-plan). Towards a low carbon future. COM(2007) 723.
  • European Commision. (2019). Comprehensive study of building energy renovation activities and the uptake of nearly zero-energy buildings in the EU. Final Report. [Online] https://ec.europa.eu/energy/sites/ener/files/documents/1.final_report.pdf
  • European Commision. (2020). Working programme 2018-2020. Secure, clean and efficient energy. European Commission Decision C (2020) 6320 of 17 September 2020 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-energy_en.pdf
  • European Construction Sector Observatory. (2018). Improving energy resource efficiency. Analytical report. [Online]. Available https://ec.europa.eu/growth/sectors/construction/observatory_en
  • European Union. (2018). Directive 2018/2001 of the European Parliament and of the Council of 11December 2018 on the promotion of the use of energy from renewable sources (recast). L328/82, O.J. 21.12.2018.
  • Foxon, T. J. (2011). A coevolutionary framework for analysing a transition to a sustainable low carbon economy. Ecological Economics, 70(12), 2258–2267. doi:10.1016/j.ecolecon.2011.07.014
  • Foxon, T. J., Reed, M. S., & Stringer, L. C. (2009). Governing long-term social-ecological change: What can the adaptive management and transition management approaches learn from each other? Environmental Policy and Governance, 19(1), 3–20. doi:10.1002/eet.496
  • Gallagher, C. V., Leahy, K., O’Donovan, P., Bruton, K., & O’Sullivan, D. T. J. (2018). Development and application of a machine learning supported methodology for measurement and verification (M&V) 2.0. Energy and Buildings, 167, 8–22. doi:10.1016/j.enbuild.2018.02.023
  • Gast, J., Gundolf, K., & Cesinger, B. (2017). Doing business in a green way: A systematic review of the ecological sustainability entrepreneurship literature and future research directions. In Journal of Cleaner Production, 147, 44–56. doi:10.1016/j.jclepro.2017.01.065
  • Geels, F. W. (2014). Regime resistance against Low-carbon transitions: Introducing politics and power into the multi-level perspective. Theory, Culture & Society, 31(5), 21–40. doi:10.1177/0263276414531627
  • Geels, F., & Raven, R. (2006). Non-linearity and expectations in niche-development trajectories: Ups and downs in Dutch biogas development (1973-2003). Technology Analysis and Strategic Management, 18(3-4), 375–392. doi:10.1080/09537320600777143
  • Geels, F. W., & Smit, W. A. (2000). Failed technology futures: Pitfalls and lessons from a historical survey. Futures, 32(9-10), 867–885. doi:10.1016/S0016-3287(00)00036-7
  • Gholamzadehmir, M., Del Pero, C., Buffa, S., Fedrizzi, R., & Aste, N. (2020). Adaptive-predictive control strategy for HVAC systems in smart buildings – A review. Sustainable Cities and Society, 63(2020), 102480. doi:10.1016/j.scs.2020.102480
  • Gliedt, T., Hoicka, C. E., & Jackson, N. (2018). Innovation intermediaries accelerating environmental sustainability transitions. In Journal of Cleaner Production, 174, 1247–1261. doi:10.1016/j.jclepro.2017.11.054
  • Govindan, K., & Bouzon, M. (2018). From a literature review to a multi-perspective framework for reverse. Journal of Cleaner Production, 187, 318–337. doi:10.1016/j.jclepro.2018.03.040
  • Gui, E. M., & MacGill, I. (2018). Typology of future clean energy communities: An exploratory structure, opportunities, and challenges. Energy Research and Social Science, 35, 94–107. doi:10.1016/j.erss.2017.10.019
  • Hess, D. J., & Sovacool, B. K. (2020). Socio-technical matters: Reviewing and integrating science and technology studies with energy social science. Energy Research and Social Science, 38(12), 7586–7595. doi:10.1016/j.erss.2020.101462
  • Howells, J. (2006). Intermediation and the role of intermediaries in innovation. Research Policy, 35(5), 715–728. doi:10.1016/j.respol.2006.03.005
  • Inglesi-Lotz, R. (2016). The impact of renewable energy consumption to economic growth: A panel data application. Energy Economics, 53, 58–63. doi:10.1016/j.eneco.2015.01.003
  • Jabareen, Y. (2009). Building a conceptual framework: Philosophy, definitions, and procedure. International Journal of Qualitative Methods, 8(4), 49–62. doi:10.1177/160940690900800406
  • Jensen, M. B., Johnson, B., Lorenz, E., & Lundvall, BÅ. (2007). Forms of knowledge and modes of innovation. Research Policy, 35(5), 680–693. doi:10.1016/j.respol.2007.01.006
  • Jones, K., Davies, A., Mosca, L., Whyte, J., & Glass, J. (2019). Changing Business Models: Implications for Construction. Trasforming Construction Network Plus, Digest Series, No.1.
  • Junker, R. G., Azar, A. G., Lopes, R. A., Lindberg, K. B., Reynders, G., Relan, R., … Madsen, H. (2018). Characterising the energy flexibility of buildings and districts. Applied Energy, 225, 175–182. doi:10.1016/j.apenergy.2018.05.037
  • Kivimaa, P., & Kern, F. (2016). Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions. Research Policy, 45(1), 205–217. doi:10.1016/j.respol.2015.09.008
  • Kneifel, J., & Webb, D. (2016). Predicting energy performance of a net-zero energy building: A statistical approach. Applied Energy, 178, 468–483. doi:10.1016/j.apenergy.2016.06.013
  • Kolk, A., van Tulder, R., & Kostwinder, E. (2008). Business and partnerships for development. European Management Journal, 26(4), 262–273. doi:10.1016/j.emj.2008.01.007
  • Kolokotsa, D. (2016). The role of smart grids in the building sector. Energy and Buildings, 116, 703–708. doi:10.1016/j.enbuild.2015.12.033
  • Kurul, E., Tah, J. H. M., & Cheung, F. (2012). Does the UK built environment sector have the institutional capacity to deliver sustainable development? Architectural Engineering and Design Management, 8(1), 42–54. doi:10.1080/17452007.2011.613218
  • Lazarevic, D., Kivimaa, P., Lukkarinen, J., & Kangas, H. L. (2019). Understanding integrated-solution innovations in sustainability transitions: Reconfigurative building-energy services in Finland. Energy Research and Social Science, 56, 101209. doi:10.1016/j.erss.2019.05.019
  • Lehmann, B., Gyalistras, D., Gwerder, M., Wirth, K., & Carl, S. (2013). Intermediate complexity model for Model Predictive Control of integrated room automation. Energy and Buildings, 58, 250–262. doi:10.1016/j.enbuild.2012.12.007
  • Lepoutre, J., & Heene, A. (2006). Investigating the impact of firm size on small business social responsibility: A critical review. Journal of Business Ethics, 67, 257–273. doi:10.1007/s10551-006-9183-5
  • Loorbach, D., Frantzeskaki, N., & Avelino, F. (2017). Sustainability transitions research: Transforming Science and practice for Societal change. Annual Review of Environment and Resources, 42, 599–626. doi:10.1146/annurev-environ-102014-021340
  • Lowitzsch, J., Hoicka, C. E., & van Tulder, F. J. (2020). Renewable energy communities under the 2019 European Clean energy package – governance model for the energy clusters of the future? Renewable and Sustainable Energy Reviews, 122, 109489. doi:10.1016/j.rser.2019.109489
  • Lundström, L., Akander, J., & Zambrano, J. (2019). Development of a space heating model suitable for the automated model generation of existing multifamily buildings—A case study in nordic climate. Energies, 12(3), 1–27. doi:10.3390/en12030485
  • Ma, L., Liu, N., Wang, L., Zhang, J., Lei, J., Zeng, Z., … Cheng, M. (2016). Multi-party energy management for smart building cluster with PV systems using automatic demand response. Energy and Buildings, 121, 11–21. doi:10.1016/j.enbuild.2016.03.072
  • Magrini, A., Lentini, G., Cuman, S., Bodrato, A., & Marenco, L. (2020). From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge – The most recent European trends with some notes on the energy analysis of a forerunner PEB example. Developments in the Built Environment, 3, 100019. doi:10.1016/j.dibe.2020.100019
  • Manfern, M., Sibilla, M., & Tronchin, L. (2021). Energy modelling and analytics in the built environment – a review of their role for energy transitions in the construction sector. Energies, 14, 679. doi:10.3390/en14030679
  • Marique, A. F., & Reiter, S. (2014). A simplified framework to assess the feasibility of zero-energy at the neighbourhood/community scale. Energy and Buildings, 82, 114–122. doi:10.1016/j.enbuild.2014.07.006
  • Meng, Q., & Mourshed, M. (2017). Degree-day based non-domestic building energy analytics and modelling should use building and type specific base temperatures. Energy and Buildings, 155, 260–268. doi:10.1016/j.enbuild.2017.09.034
  • Meng, Q., Xiong, C., Mourshed, M., Wu, M., Ren, X., Wang, W., … Song, H. (2020). Change-point multivariable quantile regression to explore effect of weather variables on building energy consumption and estimate base temperature range. Sustainable Cities and Society, 53, 101900. doi:10.1016/j.scs.2019.101900
  • Michalak, P. (2019). A thermal network model for the dynamic simulation of the energy performance of buildings with the time varying ventilation flow. Energy and Buildings, 202, 109337. doi:10.1016/j.enbuild.2019.109337
  • Oh, S., Haberl, J. S., & Baltazar, J.-C. (2020). Analysis methods for characterising energy saving opportunities from home automation devices using smart meter data. Energy and Buildings, 216, 109955. doi:10.1016/j.enbuild.2020.109955
  • Oliveira-Lima, J. A., Delgado-Gomes, V., Martins, J. F., & Lima, C. (2014). Standard-based service-oriented infrastructure to integrate intelligent buildings in distributed generation and smart grids. Energy and Buildings, 76, 450–458. doi:10.1016/j.enbuild.2014.03.013
  • Oliveira Panão, M. J. N., Santos, C. A. P., Mateus, N. M., & Carrilho da Graça, G. (2016). Validation of a lumped RC model for thermal simulation of a double skin natural and mechanical ventilated test cell. Energy and Buildings, 121, 92–103. doi:10.1016/j.enbuild.2016.03.054
  • Orehounig, K., Mavromatidis, G., Evins, R., Dorer, V., & Carmeliet, J. (2014). Towards an energy sustainable community: An energy system analysis for a village in Switzerland. Energy and Buildings, 76, 450–458. doi:10.1016/j.enbuild.2014.08.012
  • Pannier, M.-L., Schalbart, P., & Peuportier, B. (2018). Comprehensive assessment of sensitivity analysis methods for the identification of influential factors in building life cycle assessment. Journal of Cleaner Production, 199, 466–480. doi:10.1016/j.jclepro.2018.07.070
  • Paoletti, G., Pascuas, R. P., Pernetti, R., & Lollini, R. (2017). Nearly zero energy buildings: An overview of the main construction features across Europe. Buildings, 7(2), 2–22. doi:10.3390/buildings7020043
  • Péan, T. Q., Salom, J., & Costa-Castelló, R. (2019). Review of control strategies for improving the energy flexibility provided by heat pump systems in buildings. Journal of Process Control, 74, 35–49. doi:10.1016/j.jprocont.2018.03.006
  • Pfenninger, S., DeCarolis, J., Hirth, L., Quoilin, S., & Staffell, I. (2017). The importance of open data and software: Is energy research lagging behind? Energy Policy, 101, 211–215. doi:10.1016/j.enpol.2016.11.046
  • Pfenninger, S., Hirth, L., Schlecht, I., Schmid, E., Wiese, F., Brown, T., … Wingenbach, C. (2018). Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews, 19, 63–71. doi:10.1016/j.esr.2017.12.002
  • Pomponi, F., & Moncaster, A. (2017). Circular economy for the built environment: A research framework. Journal of Cleaner Production, 143, 710–718. doi:10.1016/j.jclepro.2016.12.055
  • Pomponi, F., & Moncaster, A. (2018). Scrutinising embodied carbon in buildings: The next performance gap made manifest. Renewable and Sustainable Energy Reviews, 81, 2431–2442. doi:10.1016/j.rser.2017.06.049
  • Rahman, M. S., Pota, H. R., Mahmud, M. A., & Hossain, M. J. (2016). A decentralised multi-agent approach to enhance the stability of smart microgrids with renewable energy. International Journal of Sustainable Energy, 35(5), 429–442. doi:10.1080/14786451.2014.911741
  • Roy, V., & Singh, S. (2017). Mapping the business focus in sustainable production and consumption literature: Review and research framework. Journal of Cleaner Production, 150, 224–236. doi:10.1016/j.jclepro.2017.03.040
  • Schot, J., & Geels, F. W. (2008). Strategic niche management and sustainable innovation journeys: Theory, findings, research agenda, and policy. Technology Analysis and Strategic Management, 20(5), 537–554. doi:10.1080/09537320802292651
  • Schweizer-Ries, P. (2008). Energy sustainable communities: Environmental psychological investigations. Energy Policy, 36(11), 4126–4135. doi:10.1016/j.enpol.2008.06.021
  • Seyfang, G., & Haxeltine, A. (2012). Growing grassroots innovations: Exploring the role of community-based initiatives in governing sustainable energy transitions. Environment and Planning C: Government and Policy, 30(3), 381–400. doi:10.1068/c10222
  • Shang, T., Zhang, K., Liu, P., & Chen, Z. (2017). A review of energy performance contracting business models: Status and recommendation. Sustainable Cities and Society, 34, 203–210. doi:10.1016/j.scs.2017.06.018
  • Shao, X. F., Liu, W., Li, Y., Chaudhry, H. R., & Yue, X. (2021). Multistage implementation framework for smart supply chain management under industry 4.0. Technological Forecasting and Social Change, 162, 120354. doi:10.1016/j.techfore.2020.120354
  • Sheffer, D. A., & Levit, R. E. (2010). How industry structure retards diffusion of innovation in construction: Challenges and opportunities. CRGP working paper, 59 August.
  • Shen, W., Hao, Q., Mak, H., Neelamkavil, J., Xie, H., Dickinson, J. K., … Xue, H. (2010). Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review. Advanced Engineering Informatics, 24, 196–207. doi:10.1016/j.aei.2009.09.001
  • Sibilla, M.. (2017). A meaningful mapping approach for the complex design 23(1), 41–78.
  • Sibilla, M. (2020a). Buildings-as-Energy-Service: A Tool Kit for re-thinking about a new generation of buildings as components of a future energy infrastructure. Altralinea: Firenze.
  • Sibilla, M., & Kurul, E. (2018). Distributed renewable and interactive energy systems in urban environments. TECHNE- Journal of Technology for Architecture and Environment, (1), 33–39. doi:10.13128/Techne-22710
  • Sibilla, M., & Kurul, E. (2020b). Assessing a simplified procedure to reconcile distributed renewable and interactive energy systems and urban patterns. The case study of school buildings in Rome. Journal of Urban Design, 25, 328–349. doi:10.1080/13574809.2019.1638238
  • Siddaiah, R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimisation techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376–396. doi:10.1016/j.rser.2015.12.281
  • Smith, A., & Raven, R. (2012). What is protective space? Reconsidering niches in transitions to sustainability. Research Policy, 41(6), 1025–1036. doi:10.1016/j.respol.2011.12.012
  • Smith, A., Voß, J. P., & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research Policy, 39(4), 435–448. doi:10.1016/j.respol.2010.01.023
  • Stadler, P., Girardin, L., Ashouri, A., & Maréchal, F. (2018). Contribution of model predictive control in the integration of renewable energy sources within the built environment. Frontiers in Energy Research, 6, 22. doi:10.3389/fenrg.2018.00022
  • Tam, C. M., Tam, V. W. Y., & Tsui, W. S. (2004). Green construction assessment for environmental management in the construction industry of Hong Kong. International Journal of Project Management, 22(7), 563–571. doi:10.1016/j.ijproman.2004.03.001
  • Torcellini, P., Pless, S., & Leach, M. (2015). A pathway for net-zero energy buildings: Creating a case for zero cost increase. Building Research and Information, 43(1), 25–33. doi:10.1080/09613218.2014.960783
  • Turnheim, B., & Geels, F. W. (2013). The destabilisation of existing regimes: Confronting a multi-dimensional framework with a case study of the British coal industry (1913-1967). Research Policy, 42(10), 1749–1767. doi:10.1016/j.respol.2013.04.009
  • United Nations. (2015). Adoption of the Paris Agreement. Conference of the Parties on Its Twenty-First Session.
  • Van Der Schoor, T., Van Lente, H., Scholtens, B., & Peine, A. (2016). Challenging obduracy: How local communities transform the energy system. Energy Research and Social Science, 13, 94–105. doi:10.1016/j.erss.2015.12.009
  • Vigna, I., Pernetti, R., Pasut, W., & Lollini, R. (2018). New domain for promoting energy efficiency: Energy flexible building cluster. Sustainable Cities and Society, 38, 526–533. doi:10.1016/j.scs.2018.01.038
  • Walker, G. (2008). What are the barriers and incentives for community-owned means of energy production and use? Energy Policy, 36(12), 4401–4405. doi:10.1016/j.enpol.2008.09.032
  • Winther, T., & Gurigard, K. (2017). Energy performance contracting (EPC): A suitable mechanism for achieving energy savings in housing cooperatives? Results from a Norwegian pilot project. Energy Efficiency, 10(3), 577–596. doi:10.1007/s12053-016-9477-0
  • Wittmayer, J. M., Avelino, F., van Steenbergen, F., & Loorbach, D. (2017). Actor roles in transition: Insights from sociological perspectives. Environmental Innovation and Societal Transitions, 24, 45–56. doi:10.1016/j.eist.2016.10.003
  • Woodhead, R., Stephenson, P., & Morrey, D. (2018). Digital construction: From point solutions to IoT ecosystem. Automation in Construction, 93, 35–46. doi:10.1016/j.autcon.2018.05.004
  • Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC annex 53: Total energy use in buildings—analysis and evaluation methods. Energy and Buildings, 152, 124–136. doi:10.1016/j.enbuild.2017.07.038
  • Zeleny, M. (2012). High technology and barriers to innovation: From globalisation to relocalisation. International Journal of Information Technology and Decision Making, 11(02), 441–456. doi:10.1142/S021962201240010X
  • Zhang, Y., & Wildemuth, B. M. (2009). Qualitative analysis of content. In B. M. Wildemuth (Ed.), Applications of social research methods to questions in information and library science (pp. 318–329). Westport, CT: Libraries Unlimited.
  • Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. doi:10.1016/j.rser.2012.02.049