2,062
Views
1
CrossRef citations to date
0
Altmetric
Articles

Low-energy cooling and ventilation refurbishments for buildings in a Mediterranean climate

ORCID Icon, ORCID Icon & ORCID Icon
Pages 473-494 | Received 09 Jul 2020, Accepted 29 Apr 2021, Published online: 21 May 2021

References

  • Angelopoulos, C., Cook, M. J., Spentzou, E., & Shukla, Y. (2018, September 11–12). Energy saving potential of different setpoint control algorithms in mixed-mode buildings. In BSO 2018: 4th Building Simulation and Optimization Conference (pp. 76–83).
  • Barbosa, S., & Ip, K. (2014). Perspectives of double skin façades for naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 40, 1019–1029.
  • Bhagat, R. K., Davies Wykes, M. S., Dalziel, S. B., & Linden, P. F. (2020). Effects of ventilation on the indoor spread of COVID-19. Journal of Fluid Mechanics, 903, F1.
  • Calautit, J. K., Hughes, B. R., & Ghani, S. A. (2012). A numerical investigation into the feasibility of integrating green building technologies into row houses in the Middle East. Architectural Science Review, 1–18. doi:10.1080/00038628.2012.686433
  • CIBSE. (2013). TM13, minimising the risk of Legionnaires’ disease.
  • CIBSE. (2016). Guide B index: Combined index to all four sections.
  • Curado, A., Freitas, V. P. d., & Ramos, N. M. M. (2015). Variability assessment of thermal comfort in a retrofitted social housing neighborhood based on “in situ” measurements. Energy Procedia, 78, 2790–2795.
  • Dascalaki, E. G., Balaras, C. A., Kontoyiannidis, S., & Droutsa, K. G. (2016). Modeling energy refurbishment scenarios for the Hellenic residential building stock towards the 2020 & 2030 targets. Energy and Buildings, 132, 74–90. doi:10.1016/j.enbuild.2016.06.003
  • Dehghan, A. A., Esfeh, M. K., & Manshadi, M. D. (2013). Natural ventilation characteristics of one sided wind catchers, experimental and analytical evaluation. Energy and Buildings, 61, 366–377. doi:10.1016/j.enbuild.2013.02.048
  • Dhaka, S., Mathur, J., Brager, G., & Honnekeri, A. (2015). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment, 86, 17–28. doi:10.1016/j.buildenv.2014.11.024
  • Domínguez-Amarillo, S., Fernández-Agüera, J., Sendra, J. J., & Roaf, S. (2019). The performance of Mediterranean low-income housing in scenarios involving climate change. Energy and Buildings, 202, 109374.
  • Droutsa, K. G., Kontoyiannidis, S., Dascalaki, E. G., & Balaras, C. A. (2016). Mapping the energy performance of Hellenic residential buildings from EPC (energy performance certificate) data. Energy, 98, 284–295. doi:10.1016/j.energy.2015.12.137
  • European Commission. (n.d.). EU buildings factsheets. Retrieved July 10, 2019, from https://ec.europa.eu/energy/en/eu-buildings-factsheets
  • Ford, B., Schiano-Phan, R., & Vallejo, J. A. (2019). The architecture of natural cooling. London: Routledge.
  • Gialamas, Ι. (2011). Climate classification of Greece in Köppen-Geiger [In Greek]. http://www.meteoclub.gr/themata/egkyklopaideia/2618-klimatiki-katataksi-elladas
  • Givoni, B. (1994). Passive and low energy cooling of buildings (1st ed.). New York: Van Nostrand Reinhold.
  • Graça, G. C. d., Chen, Q., Glicksman, L. R., & Norford, L. K. (2002). Simulation of wind-driven ventilative cooling systems for an apartment building in Beijing and Shanghai. Energy and Buildings, 34(1), 1–11. doi:10.1016/S0378-7788(01)00083-4
  • Hammad, F., & Abu-Hijleh, B. (2010). The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings, 42(10), 1888–1895. doi:10.1016/j.enbuild.2010.05.024
  • Hughes, B. R., Calautit, J. K., & Ghani, S. A. (2012). The development of commercial wind towers for natural ventilation: A review. Applied Energy, 92, 606–627. doi:10.1016/j.apenergy.2011.11.066
  • Koinakis, C. J. (2005). Combined thermal and natural ventilation modeling for long-term energy assessment: Validation with experimental measurements. Energy and Buildings, 37(4), 311–323. doi:10.1016/j.enbuild.2004.06.022
  • Liggett, R., & Milne, M. (2018). Climate consultant (6.0). Los Angeles, CA: UCLA Energy Design Tools Group.
  • Lundgren-Kownacki, K., Hornyanszky, E. D., Chu, T. A., Olsson, J. A., & Becker, P. (2018). Challenges of using air conditioning in an increasingly hot climate. International Journal of Biometeorology, 62(3), 401–412. doi:10.1007/s00484-017-1493-z
  • Macintyre, H. L., & Heaviside, C. (2019). Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city. Environment International, 127, 430–441. doi:10.1016/j.envint.2019.02.065
  • Mak, C. M., Niu, J. L., Lee, C. T., & Chan, K. F. (2007). A numerical simulation of wing walls using computational fluid dynamics. Energy and Buildings, 39(9), 995–1002. doi:10.1016/j.enbuild.2006.10.012
  • Martinez, D. (2000). Thermal simulation of passive downdraught evaporative cooling (PDEC) in non-domestic buildings. Leicester: De Montfort University.
  • Mavrogianni, A., & Mumovic, D. (2010). On the use of windcatchers in schools: Climate change, occupancy patterns, and adaptation strategies. Indoor and Built Environment, 19(3), 340–354. doi:10.1177/1420326X09341507
  • Mohamed, M. F., King, S., Behnia, M., & Prasad, D. (2014). The effects of balconies on the natural ventilation performance of cross-ventilated high-rise buildings. Journal of Green Building, 9(2), 145–160. doi:10.3992/1943-4618-9.2.145
  • Montazeri, H. (2011). Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Building and Environment, 46(2), 370–378. doi:10.1016/j.buildenv.2010.07.031
  • Morris, Z. S. (2009). The truth about interviewing elites. Politics, 29(3), 209–217. doi:10.1111/j.1467-9256.2009.01357.x
  • Niachou, K., Hassid, S., Santamouris, M., & Livada, I. (2005). Comparative monitoring of natural, hybrid and mechanical ventilation systems in urban canyons. Energy and Buildings, 37, 503–513. doi:10.1016/j.enbuild.2004.09.016
  • Palmero-Marrero, A. I., & Oliveira, A. C. (2010). Effect of louver shading devices on building energy requirements. Applied Energy, 87(6), 2040–2049. doi:10.1016/j.apenergy.2009.11.020
  • Papamanolis, N. (2000). Natural ventilation as a design factor in buildings in Greece. Architectural Science Review, 43(4), 175–182. doi:10.1080/00038628.2000.9696905
  • Papamanolis, N. (2006). Characteristics of the environmental and energy behaviour of contemporary urban buildings in Greece. Architectural Science Review, 49(2), 120–126. doi:10.3763/asre.2006.4916
  • Salmeron, J. M., Sánchez, F. J., Sánchez, J., Álvarez, S., Molina, J. L., & Salmeron, R. (2012). Climatic applicability of downdraught cooling in Europe. Architectural Science Review, 55(4), 259–272. doi:10.1080/00038628.2012.723393
  • Santamouris, M., & Kolokotsa, D. (2013). Passive cooling dissipation techniques for buildings and other structures: The state of the art. Energy and Buildings, 57, 74–94. doi:10.1016/j.enbuild.2012.11.002
  • Santamouris, M., Sfakianaki, A., & Pavlou, K. (2010). On the efficiency of night ventilation techniques applied to residential buildings. Energy and Buildings, 42(8), 1309–1313. doi:10.1016/j.enbuild.2010.02.024
  • Santamouris, M., & Wouters, P. (2006). Building ventilation: The state of the art. London: Routledge.
  • Spentzou, E. (2015). Refurbishment of apartment buildings in the Mediterranean region for natural ventilation: Implications for building design. Loughborough, UK: Loughborough University.
  • Spentzou, E., Cook, M. J., & Emmitt, S. (2018). Natural ventilation strategies for indoor thermal comfort in Mediterranean apartments. Building Simulation, 11(1), 175–191. doi:10.1007/s12273-017-0380-1
  • Spentzou, E., Cook, M. J., & Emmitt, S. (2019). Modelling natural ventilation for summer thermal comfort in Mediterranean dwellings. International Journal of Ventilation, 18(1), 28–45. doi:10.1080/14733315.2017.1302658
  • Visagavel, K., & Srinivasan, P. S. S. (2009). Analysis of single side ventilated and cross ventilated rooms by varying the width of the window opening using CFD. Solar Energy, 83(1), 2–5. doi:10.1016/j.solener.2008.06.004
  • Yik, F. W. H., & Lun, Y. F. (2010). Energy saving by utilizing natural ventilation in public housing in Hong Kong. Indoor and Built Environment, 19(1), 73–87. doi:10.1177/1420326X09358021
  • Yun, G. Y., & Steemers, K. (2011). Behavioural, physical and socio-economic factors in household cooling energy consumption. Applied Energy, 88(6), 2191–2200. doi:10.1016/j.apenergy.2011.01.010
  • Zhou, J., & Chen, Y. (2010). A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China. Renewable and Sustainable Energy Reviews, 14(4), 1321–1328. doi:10.1016/j.rser.2009.11.017