283
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Adaptive thermal comfort of residential buildings in the composite climatic region of India: a field study

ORCID Icon &
Received 29 Sep 2022, Accepted 04 Apr 2023, Published online: 18 Apr 2023

References

  • ASHRAE Standard. (2004). Thermal environmental conditions for human occupancy 55-2004 (ANSI/ASHRAE Standard 55-2004, pp. 1–34). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
  • CEN EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. (2007).
  • Conference, W., Doi, N. P., & This, A. (2018). POLITECNICO DI TORINO repository ISTITUZIONALE A field survey in Calcutta. Architectural issues, thermal comfort and adaptive mechanisms in hot humid climates. May 2020.
  • Deb, C., & Ramachandraiah, A. (2010). Evaluation of thermal comfort in a rail terminal location in India. Building and Environment, 45(11), 2571–2580. doi:10.1016/j.buildenv.2010.05.023
  • Dhaka, S., & Mathur, J. (2017). Quantification of thermal adaptation in air-conditioned buildings of composite climate, India. Building and Environment, 112, 296–307. doi:10.1016/j.buildenv.2016.11.035
  • Dhaka, S., Mathur, J., Brager, G., & Honnekeri, A. (2015). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India. Building and Environment, 86, 17–28. doi:10.1016/j.buildenv.2014.11.024
  • Dhaka, S., Mathur, J., Wagner, A., Das Agarwal, G., & Garg, V. (2013). Evaluation of thermal environmental conditions and thermal perception at naturally ventilated hostels of undergraduate students in composite climate. Building and Environment, 66, 42–53. doi:10.1016/j.buildenv.2013.04.015
  • GB/T 50785, Evaluation standard for indoor thermal environment in civil buildings. (2012).
  • Indraganti, M. (2010). Adaptive use of natural ventilation for thermal comfort in Indian apartments. Building and Environment, 45(6), 1490–1507. doi:10.1016/j.buildenv.2009.12.013
  • Indraganti, M., Ooka, R., & Rijal, H. B. (2013). Field investigation of comfort temperature in Indian office buildings: A case of Chennai and Hyderabad. Building and Environment, 65, 195–214. doi:10.1016/j.buildenv.2013.04.007
  • Indraganti, M., Ooka, R., Rijal, H. B., & Brager, G. S. (2014). Adaptive model of thermal comfort for offices in hot and humid climates of India. Building and Environment, 74, 39–53. doi:10.1016/j.buildenv.2014.01.002
  • Indraganti, M., & Rao, K. D. (2010). Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy and Buildings, 42(3), 273–281. doi:10.1016/j.enbuild.2009.09.003
  • ISO 7730:2005, Ergonomics of the thermal environment. (2005).
  • ISSO 74: New Dutch thermal comfort guidelines. (2006).
  • Jaffal, I., Inard, C., Ghaddar, N., & Ghali, K. (2020). A metamodel for long-term thermal comfort in non-air-conditioned buildings. Architectural Engineering and Design Management, 16(6), 441–472. doi:10.1080/17452007.2020.1719813
  • Jindal, A. (2018). Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Building and Environment, 142, 34–46. doi:10.1016/j.buildenv.2018.05.051
  • Jindal, A. (2019). Investigation and analysis of thermal comfort in naturally ventilated secondary school classrooms in the composite climate of India. Architectural Science Review, 62(6), 466–484. doi:10.1080/00038628.2019.1653818
  • Kumar, P. (2015). Evaluation of thermal comfort of naturally ventilated university students’ accommodation based on adaptive thermal comfort model and occupant survey in composite climate. International Journal of Architecture, Engineering and Construction. doi:10.7492/ijaec.2014.024
  • Kumar, S., Mathur, A., Kukreja, R., & Bagha, A. K. (2020). Quantification of thermal environments and comfort expectations of residents in hostel dormitories during hot and humid days in Indian composite climate. Advances in Building Energy Research, 1–35. doi:10.1080/17512549.2020.1746928
  • Kumar, S., Mathur, J., Mathur, S., Singh, M. K., & Loftness, V. (2016). An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Building and Environment, 109, 135–153. doi:10.1016/j.buildenv.2016.09.023
  • Kumar, S., & Singh, M. K. (2019). Field investigation on occupant’s thermal comfort and preferences in naturally ventilated multi-storey hostel buildings over two seasons in India. Building and Environment, 163, 106309. doi:10.1016/j.buildenv.2019.106309
  • Kumar, S., Singh, M. K., Kukreja, R., Chaurasiya, S. K., & Gupta, V. K. (2019). Comparative study of thermal comfort and adaptive actions for modern and traditional multi-storey naturally ventilated hostel buildings during monsoon season in India. Journal of Building Engineering, 23, 90–106. doi:10.1016/j.jobe.2019.01.020
  • Kumar, S., Singh, M. K., Loftness, V., Mathur, J., & Mathur, S. (2016). Thermal comfort assessment and characteristics of occupant’s behaviour in naturally ventilated buildings in composite climate of India. Energy for Sustainable Development, 33, 108–121. doi:10.1016/j.esd.2016.06.002
  • Kumar, S., Singh, M. K., Mathur, A., & Košir, M. (2020). Occupant’s thermal comfort expectations in naturally ventilated engineering workshop building: A case study at high metabolic rates. Energy and Buildings, 217, 109970. doi:10.1016/j.enbuild.2020.109970
  • Kumar, S., Singh, M. K., Mathur, A., Mathur, J., & Mathur, S. (2018). Evaluation of comfort preferences and insights into behavioural adaptation of students in naturally ventilated classrooms in a tropical country, India. Building and Environment, 143, 532–547. doi:10.1016/j.buildenv.2018.07.035
  • Lachireddi, G. K. K., Muthukumar, P., & Subudhi, S. (2017). Thermal comfort analysis of hostels in national institute of technology Calicut, India. Sadhana – Academy Proceedings in Engineering Sciences, 42(1), 63–73. doi:10.1007/s12046-016-0572-x
  • López-Pérez, L. A., Flores-Prieto, J. J., & Ríos-Rojas, C. (2019). Adaptive thermal comfort model for educational buildings in a hot-humid climate. Building and Environment, 150, 181–194. doi:10.1016/j.buildenv.2018.12.011
  • Maiti, R. (2014). PMV model is insufficient to capture subjective thermal response from Indians. International Journal of Industrial Ergonomics, 44(3), 349–361. doi:10.1016/j.ergon.2014.01.005
  • Malik, J., Bardhan, R., Hong, T., & Piette, M. A. (2020). Contextualising adaptive comfort behaviour within low-income housing of Mumbai, India. Building and Environment, 177, 106877. doi:10.1016/j.buildenv.2020.106877
  • Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal comfort across multiple climate zones for the subcontinent: India model for adaptive comfort (IMAC). Building and Environment, 98, 55–70. doi:10.1016/j.buildenv.2015.12.019
  • National Building Code of India. (2016). Bureau of Indian Standards.
  • Nicol, F., Humphreys, M., & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice (1st ed.). London: Routledge.
  • Nicol, J. F. (1974). An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Annals of Human Biology, 1(4), 411–426. doi:10.1080/03014467400000441
  • Ole Fanger, P., & Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 34(6), 533–536. doi:10.1016/S0378-7788(02)00003-8
  • Rajasekar, E., & Ramachandraiah, A. (2010, April). Adaptive comfort and thermal expectations – a subjective evaluation in hot humid climate. Proceedings of conference: Adapting to change: New thinking on comfort, WINDSOR 2010 (pp. 9–11). London.
  • Ramprasad, V., & Subbaiyan, G. (2017). Perceived indoor environmental quality of classrooms and outcomes: A study of a higher education institution in India. Architectural Engineering and Design Management, 13(3), 202–222. doi:10.1080/17452007.2017.1287050
  • Sánchez-García, D., Rubio-Bellido, C., Tristancho, M., & Marrero, M. (2020). A comparative study on energy demand through the adaptive thermal comfort approach considering climate change in office buildings of Spain. Building Simulation, 13(1), 51–63. doi:10.1007/s12273-019-0560-2
  • Sansaniwal, S. K., Mathur, J., Garg, V., & Gupta, R. (2020). Review of studies on thermal comfort in Indian residential buildings. Science and Technology for the Built Environment, 26(6), 727–748. doi:10.1080/23744731.2020.1724734
  • Sharma, A., Kumar, A., & Kulkarni, K. S. (2021). Thermal comfort studies for the naturally ventilated built environments in Indian subcontinent: A review. Journal of Building Engineering, 44, 103242. doi:10.1016/j.jobe.2021.103242
  • Sharma, A., & Tiwari, R. (2007). Evaluation of data for developing an adaptive model of thermal comfort and preference. The Environmentalist, 27(1), 73–81. doi:10.1007/s10669-007-9018-7
  • Sharma, M. R., & Ali, S. (1986). Thermal comfort of Indian subjects. Building and Environment, 21(1), 11–24.
  • Singh, M. K., Kumar, S., Ooka, R., Rijal, H. B., Gupta, G., & Kumar, A. (2018). Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India. Building and Environment, 128, 287–304. doi:10.1016/j.buildenv.2017.11.031
  • Singh, M. K., Mahapatra, S., & Atreya, S. K. (2010). Thermal performance study and evaluation of comfort temperatures in vernacular buildings of north-east India. Building and Environment, 45(2), 320–329. doi:10.1016/j.buildenv.2009.06.009
  • Singh, M. K., Mahapatra, S., & Atreya, S. K. (2011). Adaptive thermal comfort model for different climatic zones of north-east India. Applied Energy, 88(7), 2420–2428. doi:10.1016/j.apenergy.2011.01.019
  • Singh, M. K., Ooka, R., Rijal, H. B., & Takasu, M. (2017). Adaptive thermal comfort in the offices of north-east India in autumn season. Building and Environment, 124, 14–30. doi:10.1016/j.buildenv.2017.07.037
  • Singh, S., & Chani, P. S. (2018). Thermal comfort analysis of Indian subjects in multi-storeyed apartments: An adaptive approach in composite climate. Indoor and Built Environment, 27(9), 1216–1246. doi:10.1177/1420326X17712797
  • Thapa, S. (2020). Thermal comfort in high altitude Himalayan residential houses in Darjeeling, India – an adaptive approach. Indoor and Built Environment, 29(1), 84–100. doi:10.1177/1420326X19853877
  • Thapa, S., Bansal, A. K., & Panda, G. K. (2016). Adaptive thermal comfort in the two college campuses of Salesian College, Darjeeling – effect of difference in altitude. Building and Environment, 109, 25–41. doi:10.1016/j.buildenv.2016.09.013
  • Thapa, S., Bansal, A. K., & Panda, G. K. (2018a). Adaptive thermal comfort in the residential buildings of north east India – an effect of difference in elevation. Building Simulation, 11(2), 245–267. doi:10.1007/s12273-017-0404-x
  • Thapa, S., Bansal, A. K., & Panda, G. K. (2018b). Thermal comfort in naturally ventilated office buildings in cold and cloudy climate of Darjeeling, India – an adaptive approach. Energy and Buildings, 160, 44–60. doi:10.1016/j.enbuild.2017.12.026
  • Udaykumar, A., Rajasekar, E., & Venkateswaran, R. (2015). Thermal comfort characteristics in naturally ventilated, residential apartments in a hot-dry climate of India. Indoor and Built Environment, 24(1), 101–115. doi:10.1177/1420326X13504120
  • Udrea, I., Croitoru, C., Nastase, I., Crutescu, R., & Badescu, V. (2020). A new adaptive thermal comfort model for the Romanian climate. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 173(3), 151–159. doi:10.1680/jensu.18.00005
  • Yao, R., Li, B., & Liu, J. (2009). A theoretical adaptive model of thermal comfort – adaptive predicted mean vote (aPMV). Building and Environment, 44(10), 2089–2096. doi:10.1016/j.buildenv.2009.02.014
  • Zhang, S., & Lin, Z. (2020). Standard effective temperature based adaptive-rational thermal comfort model. Applied Energy, 264, 114723. doi:10.1016/j.apenergy.2020.114723

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.