155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of transparent BIPV/T double skin façades integrated with the decision-making algorithm for mixed-mode building ventilation

, , &
Received 09 Jan 2023, Accepted 28 Jun 2023, Published online: 26 Jul 2023

References

  • Agathokleous, R. A., & Kalogirou, S. A. (2016). Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics. Renewable Energy, 89, 743–756. doi:10.1016/j.renene.2015.12.043
  • Agathokleous, R. A., & Kalogirou, S. A. (2018a). Part I: Thermal analysis of naturally ventilated BIPV system: Experimental investigation and convective heat transfer coefficients estimation. Solar Energy, 169, 673–681. doi:10.1016/j.solener.2018.02.048
  • Agathokleous, R. A., & Kalogirou, S. A. (2018b). Part II: Thermal analysis of naturally ventilated BIPV system: Modeling and simulation. Solar Energy, 169, 682–691. doi:10.1016/j.solener.2018.02.057
  • Asaee, S. R., Nikoofard, S., Ugursal, V. I., & Beausoleil-Morrison, I. (2017). Techno-economic assessment of photovoltaic (PV) and building integrated photovoltaic/thermal (BIPV/T) system retrofits in the Canadian housing stock. Energy and Buildings, 152, 667–679. doi:10.1016/j.enbuild.2017.06.071
  • Asefi, G., Habibollahzade, A., Ma, T., Houshfar, E., & Wang, R. (2021). Thermal management of building-integrated photovoltaic/thermal systems: A comprehensive review. Solar Energy, 216, 188–210. doi:10.1016/j.solener.2021.01.005
  • ASHRAE. (2010). ANSI/ASHRAE Standard 62.1-2010: Ventilation for acceptable indoor air quality (pp. 1–70). ASHRAE Standard, 2010(STANDARD 62.1).
  • ASHRAE. (2014). ASHRAE guideline 14-201 4: Measurement of energy, demand, and water savings. 4.
  • ASHRAE. (2017). ASHRAE fundamentals (SI). In ASHRAE, “2017, ASHRAE fundamentals (SI),” in 2017, ASHRAE fundamental handbook SI, 2017th.
  • Bangkok, Thailand Koppen Climate Classification (Weatherbase). (n.d.). Retrieved from https://www.weatherbase.com/weather/weather-summary.php3?s=55484&cityname=Bangkok,+Thailand
  • Berkeley, U. C. (2018). Summary report: Control strategies for mixed-mode buildings (pp. 1–9).
  • Chen, J., Augenbroe, G., & Song, X. (2018). Evaluating the potential of hybrid ventilation for small to medium sized office buildings with different intelligent controls and uncertainties in US climates. Energy and Buildings, 158, 1648–1661. doi:10.1016/j.enbuild.2017.12.004
  • Chen, X., & Yang, H. (2017). Sensitivity analysis and optimization of a typical passively designed residential building with hybrid ventilation in hot and humid climates. Energy Procedia, 142, 1781–1786. doi:10.1016/j.egypro.2017.12.563
  • Choi, W., Joe, J., Kwak, Y., & Huh, J. H. (2012). Operation and control strategies for multi-storey double skin facades during the heating season. Energy and Buildings, 49, 454–465. doi:10.1016/j.enbuild.2012.02.047
  • CIBSE. (2005). CIBSE applications manual AM10: Natural ventilation in nondomestic buildings standard. In Heat and mass transfer in building services design (pp. 177–195). doi:10.4324/9780203477380-14
  • CIBSE TM59. (2017). Design methodology for the assessment of overheating risk in homes (Technical Memoranda, 59).
  • Daejeon, South Korea Koppen Climate Classification (Weatherbase). (n.d.). Retrieved from https://www.weatherbase.com/weather/weather-summary.php3?s=471330&cityname=Daejeon,+South+Korea
  • Debbarma, M., Sudhakar, K., & Baredar, P. (2017a). Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies, 3(3), 263–271. doi:10.1016/j.reffit.2016.11.013
  • Debbarma, M., Sudhakar, K., & Baredar, P. (2017b). Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review. Renewable and Sustainable Energy Reviews, 73, 1276–1288. doi:10.1016/j.rser.2017.02.035
  • DesignBuilder. (2022). Retrieved from https://designbuilder.co.uk/helpv2.htm
  • Duffie, J. A., Beckman, W. A., & McGowan, J. (1985). Solar engineering of thermal processes. American Journal of Physics, 53(4). doi:10.1119/1.14178
  • Fathalian, A., & Kargarsharifabad, H. (2018). Actual validation of energy simulation and investigation of energy management strategies (Case study: An office building in Semnan, Iran). Case Studies in Thermal Engineering, 12, 510–516. doi:10.1016/j.csite.2018.06.007
  • Fossa, M., Ménézo, C., & Leonardi, E. (2008). Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Experimental Thermal and Fluid Science, 32(4), 980–990. doi:10.1016/j.expthermflusci.2007.11.004
  • Hamdy, M., & Mauro, G. M. (2019). Optimizing hybrid ventilation control strategies toward zero-cooling energy building. Frontiers in Built Environment, 5, 1–15. doi:10.3389/fbuil.2019.00097
  • Hamilton, I., & Rapf, O. (2020). Executive summary of the 2020 global status report for buildings and construction (pp. 1–7). Global Alliance for Buildings and Construction.
  • Han, J., Lu, L., Peng, J., & Yang, H. (2013). Performance of ventilated double-sided PV façade compared with conventional clear glass façade. Energy and Buildings, 56, 204–209. doi:10.1016/j.enbuild.2012.08.017
  • Hensen, J. L. M., & Lamberts, R. (2019). Building performance simulation challenges and opportunities. Building Performance Simulation for Design and Operation, 1–10. doi:10.1201/9780429402296-1
  • International Energy Agency. (2019). BIPV design and performance modelling: Tools and methods. (Report IEA-PVPS T15-09:2019).
  • Jaber, S., & Ajib, S. (2011). Optimum design of Trombe wall system in mediterranean region. Solar Energy, 85(9), 1891–1898. doi:10.1016/j.solener.2011.04.025
  • Jia, J., Gao, F., Cheng, Y., Wang, P., EI-Ghetany, H. H., & Han, J. (2020). A comparative study on thermoelectric performances and energy savings of double-skin photovoltaic windows in cold regions of China. Solar Energy, 206, 464–472. doi:10.1016/j.solener.2020.05.094
  • Kilaire, A., & Stacey, M. (2017). Design of a prefabricated passive and active double skin façade system for UK offices. Journal of Building Engineering, 12, 161–170. doi:10.1016/j.jobe.2017.06.001
  • Li, D. H. W., Lam, T. N. T., Chan, W. W. H., & Mak, A. H. L. (2009). Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy, 86(5), 722–729. doi:10.1016/j.apenergy.2008.08.009
  • Maghrabie, H. M., Abdelkareem, M. A., Al-Alami, A. H., Ramadan, M., Mushtaha, E., Wilberforce, T., & Olabi, A. G. (2021). State-of-the-art technologies for building-integrated photovoltaic systems. Buildings, 11(9). doi:10.3390/buildings11090383
  • Martín-Chivelet, N., Kapsis, K., Wilson, H. R., Delisle, V., Yang, R., Olivieri, L., … Upalakshi Wijeratne, W. M. P. (2022). Building-integrated photovoltaic (BIPV) products and systems: A review of energy-related behavior. Energy and Buildings, 262. doi:10.1016/j.enbuild.2022.111998
  • Peng, J., Curcija, D. C., Lu, L., Selkowitz, S. E., Yang, H., & Mitchell, R. (2015). Developing a method and simulation model for evaluating the overall energy performance of a ventilated semi-transparent photovoltaic double-skin facade. Progress in Photovoltaics: Research and Applications, 24(1), 781–799. doi:10.1002/pip.2727
  • Peng, J., Lu, L., & Yang, H. (2013). An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong. Solar Energy, 97, 293–304. doi:10.1016/j.solener.2013.08.031
  • Poddar, S., Park, D., & Chang, S. (2017). Energy performance analysis of a dormitory building based on different orientations and seasonal variations of leaf area index. Energy Efficiency, 10(4), 887–903. doi:10.1007/s12053-016-9487-y
  • Ruiz, G. R., & Bandera, C. F. (2017). Validation of calibrated energy models: Common errors. Energies, 10(10). doi:10.3390/en10101587
  • Saadon, S., Gaillard, L., Giroux-Julien, S., & Ménézo, C. (2016). Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope. Renewable Energy, 87, 517–531. doi:10.1016/j.renene.2015.10.016
  • Shahrestani, M., Yao, R., Essah, E., Shao, L., Oliveira, A. C., Hepbasli, A., … Lechón, J. L. (2017). Experimental and numerical studies to assess the energy performance of naturally ventilated PV façade systems. Solar Energy, 147, 37–51. doi:10.1016/j.solener.2017.02.034
  • Tao, Y., Zhang, H., Huang, D., Fan, C., Tu, J., & Shi, L. (2021). Ventilation performance of a naturally ventilated double skin façade with low-e glazing. Energy, 229, 120706. doi:10.1016/j.energy.2021.120706
  • Tayshet, Russia Koppen Climate Classification (Weatherbase). (n.d.). Retrieved from https://www.weatherbase.com/weather/weather-summary.php3?s=592252&cityname=Tayshet%2C+Irkutsk%2C+Russia&units=
  • Tuncel, B., Ozden, T., Balog, R. S., & Akinoglu, B. G. (2020). Dynamic thermal modelling of PV performance and effect of heat capacity on the module temperature. Case Studies in Thermal Engineering, 22, 100754. doi:10.1016/j.csite.2020.100754
  • Xu, S., Liao, W., Huang, J., & Kang, J. (2014). Optimal PV cell coverage ratio for semi-transparent photovoltaics on office building façades in central China. Energy and Buildings, 77, 130–138. doi:10.1016/j.enbuild.2014.03.052
  • Yang, S., Cannavale, A., Di Carlo, A., Prasad, D., Sproul, A., & Fiorito, F. (2020). Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption. Solar Energy, 199, 377–399. doi:10.1016/j.solener.2020.02.044
  • Yang, S., Cannavale, A., Prasad, D., Sproul, A., & Fiorito, F. (2019). Numerical simulation study of BIPV/T double-skin facade for various climate zones in Australia: Effects on indoor thermal comfort. Building Simulation, 12(1), 51–67. doi:10.1007/s12273-018-0489-x
  • Yoon, J. H., Shim, S. R., An, Y. S., & Lee, K. H. (2013). An experimental study on the annual surface temperature characteristics of amorphous silicon BIPV window. Energy and Buildings, 62, 166–175. doi:10.1016/j.enbuild.2013.01.020
  • Yu, G., Yang, H., Yan, Z., & Kyeredey Ansah, M. (2021). A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. Applied Thermal Engineering, 182, 116081. doi:10.1016/j.applthermaleng.2020.116081
  • Yun, G. Y., McEvoy, M., & Steemers, K. (2007). Design and overall energy performance of a ventilated photovoltaic façade. Solar Energy, 81(3), 383–394. doi:10.1016/j.solener.2006.06.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.