231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of building envelope parameters on occupants’ thermal comfort and energy use in courtyard houses

, , , , &
Received 14 Dec 2022, Accepted 26 Aug 2023, Published online: 02 Sep 2023

References

  • Alkalbani, S., Rezgui, Y., Vorakulpipat, C., & Wilson, I. E. (2013). ICT adoption and diffusion in the construction industry of a developing economy: The case of the sultanate of Oman. Architectural Engineering and Design Management, 9(1), 62–75. doi:10.1080/17452007.2012.718861
  • Al-Saadi, S. N. (2006). Envelope design for thermal comfort and reduced energy consumption in residential buildings. https://scholar.google.com/scholar_lookup?title=Envelope%20design%20for%20thermal%20comfort%20and%20reduced%20energy%20consumption%20in%20residential%20buildings&publication_year=2006&author=S.N.%20Al-Saadi.
  • ANSI/ASHRAE Standard 90.1. (2019). Energy standard for buildings except low-rise residential buildings. American Society of Heating, Refrigerating and Air Conditioning Engineers (Atlanta, Georgia). New York, NY: ASHRAE.
  • Aqilah, N., Rijal, H. B., & Zaki, S. A. (2022). A review of thermal comfort in residential buildings: Comfort threads and energy saving potential. Energies, 15(23), 9012. doi:10.3390/en15239012
  • ASHRAE. (2004). Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard 55-2004. doi:10.1007/s11926-011-0203-9
  • ASHRAE. (2013). Standard 55-2013—thermal environmental conditions for human occupancy. Atlanta, GA: ASHRAE.
  • ASHRAE. (2017). Handbook of fundamentals. Atlanta, GA: ASHRAE.
  • Aydın, D., & Mıhlayanlar, E. (2020). A case study on the impact of building envelope on energy efficiency in high-rise residential buildings. Architecture, Civil Engineering, Environment (ACEE Journal), 13(1), 5–18.
  • Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6, 1590–1607.
  • Bhatnagar, S., Jacob, G., Devkar, G., Rybkowski, Z. K., Arefazar, Y., & Obulam, R. (2022). A systematic review of lean simulation games in the construction industry. Architectural Engineering and Design Management, 0(0), 1–19. doi:10.1080/17452007.2022.2155604
  • Brown, N. C., Jusiega, V., & Mueller, C. T. (2020). Implementing data-driven parametric building design with a flexible toolbox. Automation in Construction, 118, 1–16, 103252. doi:10.1016/j.autcon.2020.103252
  • Carlucci, S., Bai, L., de Dear, R., & Yang, L. (2018). Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 137, 73–89. doi:10.1016/j.buildenv.2018.03.053
  • Carmody, J., Selkowitz, S., Lee, E. S., Arasteh, D., & Willmert, T. (2004). Window system for high-performance buildings. https://scholar.google.com/scholar_lookup?title=Window%20systems%20for%20high-performance%20buildings&publication_year=2004&author=J.%20Carmody
  • Chandel, S. S., & Sarkar, A. (2015). Performance assessment of a passive solar building for thermal comfort and energy saving in a hilly terrain of India. Energy and Buildings, 86, 873–885. doi:10.1016/j.enbuild.2014.10.035
  • Cuce, E., & Riffat, S. B. (2015). Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation. Vacuum, 111, 83–91. doi:10.1016/j.vacuum.2014.10.002
  • De Dear, R., Kim, J., Candido, C., & Deuble, M. (2015). Adaptive thermal comfort in Australian school classrooms. Building Research & Information, 43(3), 383–398. doi:10.1080/09613218.2015.991627
  • de Rubeis, T., Nardi, I., Ambrosini, D., & Paoletti, D. (2018). Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate. Applied Energy, 218, 131–145. doi:10.1016/j.apenergy.2018.02.166
  • Efeoma, M. O., & Uduku, O. (2014). Assessing thermal comfort and energy efficiency in tropical African offices using the adaptive approach. Structural Survey, 32, 396–412.
  • Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79(February), 1353–1379. doi:10.1016/j.rser.2017.05.175
  • Fanger, P. (1972). Thermal comfort: Analysis and applications in environmental engineering. Applied Ergonomics, 3(3), 181. doi:10.1016/S0003-6870(72)80074-7
  • Fathy, H. (2014). Natural energy and vernacular architecture. Natural Energy and Vernacular Architecture, 28–32.
  • Fernandes, M. S., Rodrigues, E., Gaspar, A. R., Costa, J. J., & Gomes, Á. (2019). The impact of thermal transmittance variation on building design in the Mediterranean region. Applied Energy, 239, 581–597. doi:10.1016/j.apenergy.2019.01.239
  • Ghaffour, W., Ouissi, M. N., & Velay Dabat, M. A. (2020). Analysis of urban thermal environments based on the perception and simulation of the microclimate in the historic city of Tlemcen. Smart and Sustainable Built Environment, 10(2), 141–168. doi:10.1108/SASBE-12-2019-0166
  • Grasshopper. (2021). Algorithmic modeling for Rhino. https://www.grasshopper3d.com/
  • Gregory, K., Moghtaderi, B., Sugo, H., & Page, A. (2008). Effect of thermal mass on the thermal performance of various Australian residential constructions systems. Energy and Buildings, 40(4), 459–465. doi:10.1016/j.enbuild.2007.04.001
  • Hinkle, L. E., Wang, J., & Brown, N. C. (2022). Quantifying potential dynamic façade energy savings in early design using constrained optimization. Building and Environment, 221, 109265. doi:10.1016/j.buildenv.2022.109265
  • Ibrahim, Y. (2021). Dataset for “a parametric optimisation study of urban geometry design to assess outdoor thermal comfort”.
  • Ilbeigi, M., Ghomeishi, M., & Dehghanbanadaki, A. (2020). Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustainable Cities and Society, 61, 102325. doi:10.1016/j.scs.2020.102325
  • ISO 07730. (2005). Ergonomics of the thermal environment – analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
  • Jaffal, I., Inard, C., Ghaddar, N., & Ghali, K. (2020). A metamodel for long-term thermal comfort in non-air-conditioned buildings. Architectural Engineering and Design Management, 16(6), 441–472. doi:10.1080/17452007.2020.1719813
  • Jang, N., & Ham, S. (2017). A study on courtyard apartment types in South Korea from the 1960s to 1970s. Frontiers of Architectural Research, 6(2), 149–156. doi:10.1016/j.foar.2017.03.004
  • Javed, S., Ørnes, I. R., Myrup, M., & Dokka, T. H. (2019). Design optimization of the borehole system for a plus-Energy kindergarten in Oslo, Norway. Architectural Engineering and Design Management, 15(3), 181–195. doi:10.1080/17452007.2018.1555088
  • Jelle, B. P., Hynd, A., Gustavsen, A., Arasteh, D., Goudey, H., & Hart, R. (2012). Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Solar Energy Materials and Solar Cells, 96, 1–28. doi:10.1016/j.solmat.2011.08.010
  • Kalogirou, S. A., Florides, G., & Tassou, S. (2002). Energy analysis of buildings employing thermal mass in Cyprus. Renewable Energy, 27(3), 353–368. doi:10.1016/S0960-1481(02)00007-1
  • Kazemi, M., & Courard, L. (2021a). Modelling hygrothermal conditions of unsaturated substrate and drainage layers for the thermal resistance assessment of green roof: Effect of coarse recycled materials. Energy and Buildings, 250, 111315. doi:10.1016/j.enbuild.2021.111315
  • Kazemi, M., & Courard, L. (2021b). Simulation of humidity and temperature distribution in green roof with pozzolana as drainage layer: Influence of outdoor seasonal weather conditions and internal ceiling temperature. Science and Technology for the Built Environment, 27(4), 509–523. doi:10.1080/23744731.2021.1873658
  • Kazemi, M., Courard, L., & Attia, S. (2023). Water permeability, water retention capacity, and thermal resistance of green roof layers made with recycled and artificial aggregates. Building and Environment, 227, 109776. doi:10.1016/j.buildenv.2022.109776
  • Kazemi, M., Courard, L., & Hubert, J. (2021). Heat transfer measurement within green roof with incinerated municipal solid waste aggregates. Sustainability, 13(13), 7115. doi:10.3390/su13137115
  • Kazemi, M., Courard, L., & Hubert, J. (2022). Coarse recycled materials for the drainage and substrate layers of green roof system in dry condition: Parametric study and thermal heat transfer. Journal of Building Engineering, 45, 103487. doi:10.1016/j.jobe.2021.103487
  • Kazemi, M., Rahif, R., Courard, L., & Attia, S. (2023). Sensitivity analysis and weather condition effects on hygrothermal performance of green roof models characterized by recycled and artificial materials. Building and Environment, 237, 1–15.
  • Kishore, R. A., Bianchi, M. V. A., Booten, C., Vidal, J., & Jackson, R. (2021). Enhancing building energy performance by effectively using phase change material and dynamic insulation in walls. Applied Energy, 283, 116306. doi:10.1016/j.apenergy.2020.116306
  • Lee, J., Kim, J., Song, D., Kim, J., & Jang, C. (2017). Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews, 75, 1081–1088.
  • Leng, J., Wang, Q., & Liu, K. (2020). Sustainable design of courtyard environment: From the perspectives of airborne diseases control and human health. Sustainable Cities and Society, 62, 102405. doi:10.1016/j.scs.2020.102405
  • Madandoust, R., Bazkiyaei, Z. F. Z., & Kazemi, M. (2018). Factor influencing point load tests on concrete. Asian Journal of Civil Engineering, 19(8), 937–947. doi:10.1007/s42107-018-0074-8
  • Manzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755. doi:10.1016/j.rser.2015.04.095
  • Meteorological Organization Country. (2020). Retrieved March 1, 2020. http:// www.irimo.ir
  • Mirrahimi, S., Mohamed, M. F., Haw, L. C., Ibrahim, N. L. N., Yusoff, W. F. M., & Aflaki, A. (2016). The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate. Renewable and Sustainable Energy Reviews, 53, 1508–1519. doi:10.1016/j.rser.2015.09.055
  • Moein, M. M., Saradar, A., Rahmati, K., Rezakhani, Y., Ashkan, S. A., & Karakouzian, M. (2023). Reliability analysis and experimental investigation of impact resistance of concrete reinforced with polyolefin fiber in different shapes, lengths, and doses. Journal of Building Engineering, 69, 106262. doi:10.1016/j.jobe.2023.106262
  • Najafi, A., & Pilechiha, P. (2021). Energy and daylight performance optimization of butterfly inspired intelligent adaptive façade.
  • Nigra, M., Lo Verso, V. R. M., Robiglio, M., Pellegrino, A., & Martina, M. (2022). ‘Re-coding’ environmental regulation – a new simplified metric for daylighting verification during the window and indoor space design process. Architectural Engineering and Design Management, 18(4), 521–544. doi:10.1080/17452007.2021.1941738
  • Norouziasas, A., Pilehchi Ha, P., Ahmadi, M., & Rijal, H. B. (2022). Evaluation of urban form influence on pedestrians’ wind comfort. Building and Environment, 224, 109522. doi:10.1016/j.buildenv.2022.109522
  • Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., & Attia, S. (2023). Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building. Building and Environment, 235, 110195. doi:10.1016/j.buildenv.2023.110195
  • Pilechiha, P., Norouziasas, A., Ghorbani Naeini, H., & Jolma, K. (2021). Evaluation of occupant’s adaptive thermal comfort behaviour in naturally ventilated courtyard houses. Smart and Sustainable Built Environment, 11(4), 793–811. doi:10.1108/SASBE-02-2021-0020
  • Piraei, F., Matusiak, B., & Lo Verso, V. R. M. (2022). Evaluation and optimization of daylighting in heritage buildings: A case-study at high latitudes. Buildings, 12(12), 2045. doi:10.3390/buildings12122045
  • Pourshaghaghy, A., & Omidvari, M. (2012). Examination of thermal comfort in a hospital using PMV-PPD model. Applied Ergonomics, 43(6), 1089–1095. doi:10.1016/j.apergo.2012.03.010
  • Rahif, R., Kazemi, M., & Attia, S. (2023). Overheating analysis of optimized nearly Zero-Energy dwelling during current and future heatwaves coincided with cooling system outage. Energy and Buildings, 287, 112998. doi:10.1016/j.enbuild.2023.112998
  • Rahif, R., Norouziasas, A., Elnagar, E., Doutreloup, S., Pourkiaei, S. M., Amaripadath, D., … Attia, S. (2022). Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 223, 109397. doi:10.1016/j.buildenv.2022.109397
  • Reilly, A., & Kinnane, O. (2017). The impact of thermal mass on building energy consumption. Applied Energy, 198, 108–121. doi:10.1016/j.apenergy.2017.04.024
  • Roudsari, M. S., & Pak, M. (2013). Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 3128–3135.
  • Safizadeh, M. (2023). Simulation of the circulation complexity in student residence buildings using space syntax analyses (Case studies: Highland Hall, Rita Atkinson, Rutgers University and Tooker Residences, USA). Architectural Engineering and Design Management, 0(0), 1–20. doi:10.1080/17452007.2023.2203372
  • Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y., & Romo-Castillo, A. (2016). Parametric energy simulation in early design: High-rise residential buildings in urban contexts. Building and Environment, 101, 19–31. doi:10.1016/j.buildenv.2016.02.018
  • Sharma, A., & Kumar, A. (2023). Adaptive thermal comfort of residential buildings in the composite climatic region of India: A field study. Architectural Engineering and Design Management, 0(0), 1–22. doi:10.1080/17452007.2023.2201416
  • Soflaei, F., Shokouhian, M., Tabadkani, A., Moslehi, H., & Berardi, U. (2020). A simulation-based model for courtyard housing design based on adaptive thermal comfort. Journal of Building Engineering, 31, 101335. doi:10.1016/j.jobe.2020.101335
  • Talebian, M. H. (2018). Historic city of yazad World heritage site important, values, management and challenges, IRanina cultural handi craft and tourism organization.
  • Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81(June), 2011–2018. doi:10.1016/j.rser.2017.06.010
  • Taylor, M., Brown, N. C., & Rim, D. (2021). Optimizing thermal comfort and energy use for learning environments. Energy and Buildings, 248, 111181. doi:10.1016/j.enbuild.2021.111181
  • Teshnehdel, S., Soflaei, F., & Shokouhian, M. (2020). Assessment of solar shading performance of courtyard houses in desert climate of Kashan, Iran. Architectural Engineering and Design Management, 16(6), 473–492. doi:10.1080/17452007.2020.1758025
  • Thanu, H. P., Rajasekaran, C., & Deepak, M. D. (2023). Assessing the life cycle performance of green building projects: A building performance score (BPS) model approach. Architectural Engineering and Design Management, 19(4), 378–393. doi:10.1080/17452007.2022.2068495
  • Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411–419.
  • US Department of Energy. (2018). EnergyPlusTM version 8.9.0 documentation: Engineering reference. www.energyplus.net
  • Valitabar, M., GhaffarianHoseini, A., GhaffarianHoseini, A., & Attia, S. (2022). Advanced control strategy to maximize view and control discomforting glare: A complex adaptive façade. Architectural Engineering and Design Management, 1–21.
  • Vantyghem, G., Ooms, T., & De Corte, W. (2021). VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing. Automation in Construction, 122, 103469. doi:10.1016/j.autcon.2020.103469
  • Wu, Z., Li, N., Wargocki, P., Peng, J., Li, J., & Cui, H. (2019). Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China. Energy, 182, 471–482. doi:10.1016/j.energy.2019.05.204
  • Yang, H. (2013). The case for being automatic: Introducing the Automatic Linear Modeling (LINEAR) Procedure in SPSS Statistics. Multiple Linear Regression Viewpoints, 39, 27–37.
  • Yilmaz, N., & Donaldson, A. B. (2005). Consideration of wind barriers for an inner courtyard. Architectural Engineering and Design Management, 1(4), 281–293. doi:10.1080/17452007.2005.9684598
  • Zaki, S. A., Damiati, S. A., Rijal, H. B., Hagishima, A., & Abd Razak, A. (2017). Adaptive thermal comfort in university classrooms in Malaysia and Japan. Building and Environment, 122, 294–306. doi:10.1016/j.buildenv.2017.06.016
  • Zhao, J., & Du, Y. (2020). Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Solar Energy, 206, 997–1017. doi:10.1016/j.solener.2020.05.090
  • Zhou, J., Zhang, G., Lin, Y., & Li, Y. (2008). Coupling of thermal mass and natural ventilation in buildings. Energy and Buildings, 40(6), 979–986. doi:10.1016/j.enbuild.2007.08.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.