208
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Employing ANN for daylight and energy prediction of hot climate office buildings: a case study of new Cairo, Egypt

ORCID Icon, ORCID Icon, , ORCID Icon &
Received 29 Mar 2023, Accepted 26 Aug 2023, Published online: 06 Sep 2023

References

  • Alawadi, S., Mera, D., Fernández-Delgado, M., Alkhabbas, F., Olsson, C. M., & Davidsson, P. (2022). A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. Energy Systems, 13(3), 689–705. doi:10.1007/s12667-020-00376-x
  • Architectural Energy Corporation. (2006). Daylighting metric development using daylight autonomy calculations in the sensor placement optimization tool. CHPS Daylighting Committee, Daylighting Forum.
  • Ayoub, M. (2019). 100 years of daylighting: A chronological review of daylight prediction and calculation methods. Solar Energy, 194, 360–390. doi:10.1016/j.solener.2019.10.072
  • Ayoub, M. (2020). A review on machine learning algorithms to predict daylighting inside buildings. Solar Energy, 202, 249–275. doi:10.1016/j.solener.2020.03.104
  • Bahdad, A. A. S., Fadzil, S. F. S., Onubi, H. O., & BenLasod, S. A. (2022). Multi-dimensions optimization for optimum modifications of light-shelves parameters for daylighting and energy efficiency. International Journal of Environmental Science and Technology, 19(4), 2659–2676. doi:10.1007/s13762-021-03328-9
  • Butera, F. M., Adhikari, R., & Aste, N. (2014). Sustainable building design for tropical climates: Principles and Applications for Eastern Africa. United Nations Human Settlements Programme. Retreived from https://re.public.polimi.it/handle/11311/919755
  • Chatzikonstantinou, I., & Sariyildiz, S. (2016). Approximation of simulation-derived visual comfort indicators in office spaces: A comparative study in machine learning. Architectural Science Review, 59(4), 307–322. doi:10.1080/00038628.2015.1072705
  • Chi, D. A., Moreno, D., & Navarro, J. (2021). Impact of perforated solar screens on daylight availability and low energy use in offices. Advances in Building Energy Research, 15(1), 117–141. doi:10.1080/17512549.2018.1550439
  • Da Fonseca, R. W., Didoné, E. L., & Pereira, F. O. R. (2013). Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements. Energy and Buildings, 61, 31–38. doi:10.1016/j.enbuild.2013.02.009
  • Dutta, A., Samanta, A., & Neogi, S. (2017). Influence of orientation and the impact of external window shading on building thermal performance in tropical climate. Energy and Buildings, 139, 680–689. doi:10.1016/j.enbuild.2017.01.018
  • Eisazadeh, N., Allacker, K., & De Troyer, F. (2021). Integrated energy, daylighting and visual comfort analysis of window systems in patient rooms. Science and Technology for the Built Environment, 27(8), 1040–1055. doi:10.1080/23744731.2021.1912512
  • Eltaweel, A., & SU, Y. (2017). Parametric design and daylighting: A literature review. Renewable and Sustainable Energy Reviews, 73, 1086–1103. doi:10.1016/j.rser.2017.02.011
  • Fahmy, M., Mahdy, M. M., & Nikolopoulou, M. (2014). Prediction of future energy consumption reduction using GRC envelope optimization for residential buildings in Egypt. Energy and Buildings, 70, 186–193. doi:10.1016/j.enbuild.2013.11.057
  • Han, Y., Shen, L., & Sun, C. (2021). Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design. Building and Environment, 200, 107932. doi:10.1016/j.buildenv.2021.107932
  • Hariyadi, A., Fukuda, H., & Ma, Q. (2017). The effectiveness of the parametric design ‘Sudare’ blind as external shading for energy efficiency and visibility quality in Jakarta. Architectural Engineering and Design Management, 13(5), 384–403. doi:10.1080/17452007.2017.1296811
  • Hu, J., & Olbina, S. (2011). Illuminance-based slat angle selection model for automated control of split blinds. Building and Environment, 46(3), 786–796. doi:10.1016/j.buildenv.2010.10.013
  • Kirimtat, A., Koyunbaba, B. K., Chatzikonstantinou, I., & Sariyildiz, S. (2016). Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews, 53, 23–49. doi:10.1016/j.rser.2015.08.020
  • Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161–179. doi:10.1016/j.solener.2015.12.020
  • Lam, J. C., & Li, D. H. (1999). An analysis of daylighting and solar heat for cooling-dominated office buildings. Solar Energy, 65(4), 251–262. doi:10.1016/S0038-092X(98)00136-4
  • Lee, J., Boubekri, M., & Park, J. (2022). Daylight, human health, and design for sustainable green buildings: A systematic review. Journal of Green Building, 17(4), 151–178. doi:10.3992/jgb.17.4.151
  • Lin, C-H, & Tsay, Y-S. (2021). A metamodel based on intermediary features for daylight performance prediction of façade design. Building and Environment, 206, 108371. doi:10.1016/j.buildenv.2021.108371
  • Lorenz, C. L., Spaeth, A. B., Bleil de Souza, C., & Packianather, M. S. (2020). Artificial neural networks for parametric daylight design. Architectural Science Review, 63(2), 210–221. doi:10.1080/00038628.2019.1700901
  • Maksoud, A., Mushtaha, E., Al-Sadoon, Z., Sahall, H., & Toutou, A. (2022). Design of islamic parametric elevation for interior, enclosed corridors to optimize daylighting and solar radiation exposure in a desert climate: A case study of the University of Sharjah, UAE. Buildings, 12(2), 161. doi:10.3390/buildings12020161
  • Nabil, A., & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 38(7), 905–913. doi:10.1016/j.enbuild.2006.03.013
  • Ngarambe, J., Adilkhanova, I., Uwiragiye, B., & Yun, G. Y. (2022). A review on the current usage of machine learning tools for daylighting design and control. Building and Environment, 223, 109507. doi:10.1016/j.buildenv.2022.109507
  • Ngarambe, J., Irakoze, A., Yun, G. Y., & Kim, G. (2020). Comparative performance of machine learning algorithms in the prediction of indoor daylight illuminances. Sustainability, 12(11), 4471. doi:10.3390/su12114471
  • Noorzai, E., Bakmohammadi, P., & Garmaroudi, M. A. (2022). Optimizing daylight, energy and occupant comfort performance of classrooms with photovoltaic integrated vertical shading devices. Architectural Engineering and Design Management, 1–25. doi:10.1080/17452007.2022.2080173
  • Nourkojouri, H., Shafavi, N. S., Tahsildoost, M., & Zomorodian, Z. S. (2021). Development of a machine-learning framework for overall daylight and visual comfort assessment in early design stages. Journal of Daylighting, 8(2), 270–283. doi:10.15627/jd.2021.21
  • Sun, C., Liu, Q., & Han, Y. (2020). Many-objective optimization design of a public building for energy, daylighting and cost performance improvement. Applied Sciences, 10(7), 2435. doi:10.3390/app10072435
  • Urbano Gutiérrez, R., Du, J., Ferreira, N., Ferrero, A., & Sharples, S. (2019). Daylight control and performance in office buildings using a novel ceramic louvre system. Building and Environment, 151, 54–74. doi:10.1016/j.buildenv.2019.01.030
  • Uribe, D., Veraand, S., & Bustamante, B. (2017). Optimization of complex fenestration systems using an artificial neural network. Retrieved from https://anzasca.net/wp-content/uploads/2017/11/asa_2017_uribe_veraand_bustamante.pdf
  • USGBC, LEED® green building program v.4. USGBC, LEED® green building program v.4. Washington D.C: The U.S.
  • Wagdy, A., & Fathy, F. (2015). A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. Journal of Building Engineering, 3, 155–170. doi:10.1016/j.jobe.2015.07.007
  • Wen, S., Hu, X., Hua, G., Xue, P., & Lai, D. (2023). Comparing the performance of four shading strategies based on a multi-objective genetic algorithm: A case study in a university library. Journal of Building Engineering, 63, 105532. doi:10.1016/j.jobe.2022.105532
  • Yusoff, W. F. M., Shaharil, M. I., Mohamed, M. F., Rasani, M. R. M., Sapian, A. R., & Dahlan, N. D. (2022). Review of openings with shading devices at naturally ventilated buildings. Architectural Engineering and Design Management, 1–17. doi:10.1080/17452007.2022.2095553

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.