789
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The relationship between ventilation rates in schools and the indoor airborne transmission potential of COVID-19

ORCID Icon, ORCID Icon & ORCID Icon
Received 28 Dec 2022, Accepted 19 Sep 2023, Published online: 30 Sep 2023

References

  • Al-Hubail, J., & Al-Temeemi, A.-S. (2015). Assessment of school building air quality in a desert climate. Building and Environment, 94, 569–579. doi:10.1016/j.buildenv.2015.10.013
  • Andrejko, K. L. (2022). Effectiveness of face mask or respirator use in indoor public settings for prevention of SARS-CoV-2 infection—California, February–December 2021. MMWR. Morbidity and Mortality Weekly Report, 71, 212–216. doi:10.15585/mmwr.mm7106e1
  • ASHRAE. (2022). ASHRAE position document on indoor carbon dioxide. ASHRAE. https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbondioxide_2022.pdf
  • Awbi H. B. (2002). Ventilation of Buildings (2nd ed.). Routledge. https://doi.org/10.4324/9780203634479
  • Azuma, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 121, 51–56. doi:10.1016/j.envint.2018.08.059
  • Bakó-Biró, Z., Clements-Croome, D. J., Kochhar, N., Awbi, H. B., & Williams, M. J. (2012). Ventilation rates in schools and pupils’ performance. Building and Environment, 48, 215–223. doi:10.1016/j.buildenv.2011.08.018
  • Bazant, M. Z., & Bush, J. W. M. (2021). A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 118(17), e2018995118. doi:10.1073/pnas.2018995118
  • Brooks, J. T., & Butler, J. C. (2021). Effectiveness of mask wearing to control community spread of SARS-CoV-2. JAMA, 325(10), 998–999. doi:10.1001/jama.2021.1505
  • Buonanno, G., Stabile, L., & Morawska, L. (2020). Estimation of airborne viral emission_ quanta emission rate of SARS-CoV-2 for infection risk assessment. doi:10.1016/j.envint.2020.105794
  • Central Statistics Office. (2021). Education statistics. Central Statistics Office. https://www.cso.ie/en/statistics/education/
  • Choe, Y., Heo, J., Park, J., Kim, E., Ryu, H., Kim, D. J., … Yang, W. (2020). Evaluation of carbon dioxide concentrations and ventilation rates in elementary middle, and high schools. Journal of Environmental Health Sciences, 46(3), 344–352.
  • Chughtai, A. A., Seale, H., & Macintyre, C. R. (2020). Effectiveness of cloth masks for protection against severe acute respiratory syndrome Coronavirus 2—Volume 26, Number 10—October 2020—Emerging Infectious Diseases journal—CDC.
  • CIBSE. (2004). Heating, ventilating, air conditioning and refrigeration. Chartered Institution of Building Services Engineers, London.
  • CIBSE. (2006). CIBSE Guide A Environmental Design. CIBSE (London: Chartered Institution of Building Services Engineers).
  • CIBSE. (2015). CIBSE Guide A: Environmental Design. CIBSE (London: Chartered Institution of Building Services Engineers).
  • CIBSE. (2016). CIBSE Guide B2: Ventilation and ductwork. CIBSE (London: Chartered Institution of Building Services Engineers).
  • Clements-Croome, D. J., Awbi, H. B., Bakó-Biró, Z., Kochhar, N., & Williams, M. (2008). Ventilation rates in schools. Building and Environment, 43(3), 362–367. doi:10.1016/j.buildenv.2006.03.018
  • Cole, E. C., & Cook, C. E. (1998). Characterization of infectious aerosols in health care facilities: An aid to effective engineering controls and preventive strategies. American Journal of Infection Control, 26(4), 453–464. doi:10.1016/S0196-6553(98)70046-X
  • Coley, D. A., & Beisteiner, A. (2002). Carbon dioxide levels and ventilation rates in schools. International Journal of Ventilation, 1(1), 45–52. doi:10.1080/14733315.2002.11683621
  • Corsi, R., Torres, V., Sanders, M., & Kinney, K. (2013, July 6). Carbon dioxide levels and dynamics in elementary schools: Results of the TESIAS study [Text]. AIVC. https://www.aivc.org/resource/carbon-dioxide-levels-and-dynamics-elementary-schools-results-tesias-study
  • Dai, H., & Zhao, B. (2020). Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Building Simulation, 13(6), 1321–1327. doi:10.1007/s12273-020-0703-5
  • Department of Education. (2020). COVID-19 response plan for the safe and sustainable operation of Post Primary Schools.
  • Department of Education. (2021a). Room air cleaner guidance for schools. Department of Education. https://www.gov.ie/en/publication/c6578-room-air-cleaner-guidance-for-schools/
  • Department of Education. (2021b). School design guide SDG 02-03 post primary school design guide. file:///C:/Users/Seamus/AppData/Local/Temp/MicrosoftEdgeDownloads/74b62159-4e37-4438-816e-8955df963221/131217_25e3cdb0-f720-44d6-82c0-8298f7391dbc.pdf.
  • Department of Education and Science. (2004). Mechanical & electrical building services engineering guidelines for post primary school buildings. Department of Education and Science. file:///C:/Users/455088/Downloads/93656_ef5f23c0-a2ad-41b2-b60e-90ea30d83f3c%20(1).pdf.
  • Dijken, F., Bronswijk, J., & Sundell, J. (2005). Indoor environment in Dutch primary schools and health of the pupils. Indoor Air, 6.
  • Ding, E., Zhang, D., & Bluyssen, P. M. (2022). Ventilation regimes of school classrooms against airborne transmission of infectious respiratory droplets: A review. Building and Environment, 207, 108484. doi:10.1016/j.buildenv.2021.108484
  • Dolan, J. (2007). Using minimum energy in Ireland’s Schools. Organisation for Economic Co-operation and Development.
  • Dorizas, P. V., Assimakopoulos, M.-N., & Santamouris, M. (2015). A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools. Environmental Monitoring and Assessment, 187(5), 259. doi:10.1007/s10661-015-4503-9
  • Etheridge, D., & Sandberg, M. (1996). Building ventilation theory and measurement. Wiley, London.
  • Fabian, P., McDevitt, J. J., Lee, W.-M., Houseman, E. A., & Milton, D. K. (2009). An optimized method to detect influenza virus and human rhinovirus from exhaled breath and the airborne environment. Journal of Environmental Monitoring : Jem, 11(2), 314–317. doi:10.1039/b813520g
  • Fennelly, K. P., & Nardell, E. A. (1998). The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis. Infection Control and Hospital Epidemiology, 19(10), 754–759. doi:10.2307/30141420
  • Fernstrom, A., & Goldblatt, M. (2013a). Aerobiology and its role in the transmission of infectious diseases. Journal of Pathogens, 2013, e493960. doi:10.1155/2013/493960
  • Fisk, W. J. (2017). The ventilation problem in schools: Literature review. Indoor Air, 27(6), 1039–1051. doi:10.1111/ina.12403
  • Fontes, D., Reyes, J., Ahmed, K., & Kinzel, M. (2020). A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze. Physics of Fluids, 32(11), 111904. doi:10.1063/5.0032006
  • Fromme, H., Heitmann, D., Dietrich, S., Schierl, R., Körner, W., Kiranoglu, M., … Twardella, D. (2008). [Air quality in schools—classroom levels of carbon dioxide (CO2), volatile organic compounds (VOC), aldehydes, endotoxins and cat allergen]. Gesundheitswesen (Bundesverband der Arzte des Offentlichen Gesundheitsdienstes (Germany)), 70(2), 88–97.
  • Guo, Y., Qian, H., Sun, Z., Cao, J., Liu, F., Luo, X., … Zhang, Y. (2021). Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF). Sustainable Cities and Society, 67, 102719. doi:10.1016/j.scs.2021.102719
  • Hella, J., Morrow, C., Mhimbira, F., Ginsberg, S., Chitnis, N., Gagneux, S., … Fenner, L. (2017). Tuberculosis transmission in public locations in Tanzania: A novel approach to studying airborne disease transmission. Journal of Infection, 75(3), 191–197. doi:10.1016/j.jinf.2017.06.009
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. doi:10.1016/S0140-6736(20)30183-5
  • Huang, Q., Marzouk, T., Cirligeanu, R., Malmstrom, H., Eliav, E., & Ren, Y.-F. (2021). Ventilation assessment by carbon dioxide levels in dental treatment rooms. Journal of Dental Research, 100(8), 810–816. doi:10.1177/00220345211014441
  • Issarow, C. M., Mulder, N., & Wood, R. (2015). Modelling the risk of airborne infectious disease using exhaled air. Journal of Theoretical Biology, 372, 100–106. doi:10.1016/j.jtbi.2015.02.010
  • Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research, 188, 109819. doi:10.1016/j.envres.2020.109819
  • Jimenez, J.-L. (2020, August 4). How to quantify the ventilation rate of an indoor space using a cheap CO2 monitor. Medium. https://medium.com/@jjose_19945/how-to-quantify-the-ventilation-rate-of-an-indoor-space-using-a-cheap-co2-monitor-4d8b6d4dab44
  • Johansson, M. A., Quandelacy, T. M., Kada, S., Prasad, P. V., Steele, M., Brooks, J. T., … Butler, J. C. (2021). SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Network Open, 4(1), e2035057. doi:10.1001/jamanetworkopen.2020.35057
  • Lednicky, J. A., Lauzard, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., … Wu, C.-Y. (2020). Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 100, 476–482. doi:10.1016/j.ijid.2020.09.025
  • Li, Y., Leung, G. M., & Tang, J. W. (2007). Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review.
  • Liao, C.-M., Chang, C.-F., & Liang, H.-M. (2005). A probabilistic transmission dynamic model to assess indoor airborne infection risks. Risk Analysis: An Official Publication of the Society for Risk Analysis, 25(5), 1097–1107. doi:10.1111/j.1539-6924.2005.00663.x
  • Lindsley, W. G., Blachere, F. M., Beezhold, D. H., Thewlis, R. E., Noorbakhsh, B., Othumpangat, S., … Noti, J. D. (2016). Viable influenza A virus in airborne particles expelled during coughs versus exhalations. Influenza and Other Respiratory Viruses, 10(5), 404–413. doi:10.1111/irv.12390
  • Mikszewski, A., Stabile, L., Buonanno, G., & Morawska, L. (2021). The vaccination threshold for SARS-CoV-2 depends on the indoor setting and room ventilation. BMC Infectious Diseases, 21(1), 1193. doi:10.1186/s12879-021-06884-0
  • Miller, S. L., Nazaroff, W. W., Jimenez, J. L., Boerstra, A., Buonanno, G., Dancer, S. J., … Noakes, C. (2021). Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 31(2), 314–323. doi:10.1111/ina.12751
  • Morawska, L., & Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139, 105730. doi:10.1016/j.envint.2020.105730
  • Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., … Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science, 40(3), 256–269. doi:10.1016/j.jaerosci.2008.11.002
  • Morawska, L., & Milton, D. K. (2020). It is time to address airborne transmission of COVID-19. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71(9), 2311–2313. doi:10.1093/cid/ciaa939. PMID: 32628269; PMCID: PMC7454469.
  • Myatt, T. A., Johnston, S. L., Zuo, Z., Wand, M., Kebadze, T., Rudnick, S., & Milton, D. K. (2004). Detection of airborne rhinovirus and its relation to outdoor Air supply in office environments. American Journal of Respiratory and Critical Care Medicine, 169(11), 1187–1190. doi:10.1164/rccm.200306-760OC
  • Myhrvold, A. N., Olsen, E., & Lauridsen, O. (1996). Indoor environment in schools–pupils health and performance in regard to CO2 concentrations. Indoor Air, 96(4), 369–371.
  • Nardell, E., Keegan, J., Cheney, S., & Etkind, S. (1991). Airborne infection—theoretical limits of protection achievable by building ventilation. American Review of Respiratory Disease, 144(2), 302–306. doi:10.1164/ajrccm/144.2.302
  • Nazaroff, W. W., Nicas, M., & Miller, S. L. (1998). Framework for evaluating measures to control nosocomial tuberculosis transmission. Indoor Air, 8(4), 205–218. doi:10.1111/j.1600-0668.1998.00002.x
  • Orimadegun, A. E., & Omisanjo, A. O. (2014). Evaluation of five formulae for estimating body surface area of Nigerian children. Annals of Medical and Health Sciences Research, 4(6). doi:10.4103/2141-9248.144907
  • Ram, K., Thakur, R. C., Singh, D. K., Kawamura, K., Shimouchi, A., Sekine, Y., … Tripathi, S. N. (2021). Why airborne transmission hasn’t been conclusive in case of COVID-19? An atmospheric science perspective. The Science of the Total Environment, 773, 145525. doi:10.1016/j.scitotenv.2021.145525
  • Riley, E. C., Murphy, G., & Riley, R. L. (1978). Airborne spread of measles in a suburban elementary school. American Journal of Epidemiology, 107(5), 421–432. doi:10.1093/oxfordjournals.aje.a112560
  • Royal College of Paediatrics and Child Health. (n.d.). WHO growth charts 2-18 years. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years
  • Rudnick, S. N., & Milton, D. K. (2003). Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air, 13(3), 237–245. doi:10.1034/j.1600-0668.2003.00189.x. PMID: 12950586.
  • Sheppard, T. (2011). Ireland’s generic repeat design schools programme. Organisation for Economic Co-operation and Development.
  • Sigurdsson, T. S., & Lindberg, L. (2020). Six commonly used empirical body surface area formulas disagreed in young children undergoing corrective heart surgery. Acta Paediatrica, 109(9), 1838–1846. doi:10.1111/apa.15208
  • Simoni, M., Annesi-Maesano, I., Sigsgaard, T., Norback, D., Wieslander, G., Nystad, W., … Viegi, G. (2010). School air quality related to dry cough, rhinitis and nasal patency in children. The European Respiratory Journal, 35(4), 742–749. doi:10.1183/09031936.00016309
  • Stadnytskyi, V., Anfinrud, P., & Bax, A. (2021). Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2? Journal of Internal Medicine, 290(5), 1010–1027. doi:10.1111/joim.13326
  • Sun, C., & Zhai, Z. (2020). The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustainable Cities and Society, 62, 102390. doi:10.1016/j.scs.2020.102390
  • Sze To, G. N., & Chao, C. Y. H. (2010). Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases. Indoor Air, 20(1), 2–16. doi:10.1111/j.1600-0668.2009.00621.x
  • Wang, J., & Du, G. (2020). COVID-19 may transmit through aerosol. Irish Journal of Medical Science, 189(4), 1143–1144. doi:10.1007/s11845-020-02218-2
  • Wei, J., & Li, Y. (2016). Airborne spread of infectious agents in the indoor environment.
  • Wells, W. F. (1955). Airborne contagion and air hygiene. Harvard University Press. Cambridge, Massachusetts.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. doi:10.1056/NEJMoa2001017