165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimizing energy and daylight performance of vernacular dwellings for contemporary architecture: a parametric analysis

, ORCID Icon, &
Received 05 Jun 2023, Accepted 19 Oct 2023, Published online: 30 Oct 2023

References

  • Abd Wahab, I., Abd Aziz, H., & Abd Salam, N. N. (2019). Building design effect on indoor natural ventilation of tropical houses. International Journal of Sustainable Construction Engineering and Technology, 10(1). doi:10.30880/ijscet.2019.10.01.003
  • Aksamija, A. (2018). Methods for integrating parametric design with building performance analysis. (Ed.), ARCC Conference Repository.
  • Alzoubi, H. H., & Almalkawi, A. T. (2019). A comparative study for the traditional and modern houses in terms of thermal comfort and energy consumption in Umm Qais city, Jordan. Journal of Ecological Engineering, 20(5). doi:10.12911/22998993/105324
  • Bader, J., & Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76. doi:10.1162/EVCO_a_00009
  • Bakmohammadi, P., & Noorzai, E. (2020). Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6, 1590–1607. doi:10.1016/j.egyr.2020.06.008
  • Bodach, S., Lang, W., & Hamhaber, J. (2014). Climate responsive building design strategies of vernacular architecture in Nepal. Energy and Buildings, 81, 227–242. doi:10.1016/j.enbuild.2014.06.022
  • Bonomolo, M., Beccali, M., Brano, V. L., & Zizzo, G. (2017). A set of indices to assess the real performance of daylight-linked control systems. Energy and Buildings, 149, 235–245. doi:10.1016/j.enbuild.2017.05.065
  • Borys, I., Jin, L., Zhu, Z., & Bart, D. (2019). The strategies and effectiveness of climate adaptation for the thousand pillars dwelling based on passive elements and passive spaces. Energy and Buildings, 183, 17–44. doi:10.1016/j.enbuild.2018.10.029
  • Bre, F., & Fachinotti, V. D. (2017). A computational multi-objective optimization method to improve energy efficiency and thermal comfort in dwellings. Energy and Buildings, 154, 283–294. doi:10.1016/j.enbuild.2017.08.002
  • Chandel, S., Sharma, V., & Marwah, B. M. (2016). Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renewable and Sustainable Energy Reviews, 65, 459–477. doi:10.1016/j.rser.2016.07.038
  • Darbandi, M., Ahmadi, M., Alidoost Masoole, S., & Rahimi Atani, S. (2016). Improving the performance of contextual architectural elements in Guilan architecture and recreating it in modern structures using nanotechnology (Persian). Journal of Iranian Architecture & Urbanism, 6(10), 5–18.
  • Delsha, M., Hosseinpour, M., & Vahedi, S. (2019). Matching the architectural features of Iran in the native architecture of Guilan; A case study of the Sufi House of Amlash and the House of Ayatollah Boroujerdi (Persian). Architecture (Washington, D C ), 5(1), 27–38.
  • Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., … Rosenberg, M. (2011). US Department of Energy commercial reference building models of the national building stock.
  • Dili, A., Naseer, M., & Varghese, T. Z. (2011). Passive control methods for a comfortable indoor environment: Comparative investigation of traditional and modern architecture of Kerala in summer. Energy and Buildings, 43(2-3), 653–664. doi:10.1016/j.enbuild.2010.11.006
  • Ding, D. (2022). Solar passive features in vernacular Gyalrong Tibetan houses: A quantitative investigation. Ain Shams Engineering Journal, 13(1), 101525. doi:10.1016/j.asej.2021.06.011
  • Donato, M., Zemella, G., Rapone, G., Hussain, J., & Black, C. (2017). An innovative app for a parametric, holistic and multidisciplinary approach to early design stages. Journal of Façade Design and Engineering, 5(2), 113–127.
  • Du, X., Bokel, R., & van den Dobbelsteen, A. (2014). Building microclimate and summer thermal comfort in free-running buildings with diverse spaces: A Chinese vernacular house case. Building and Environment, 82, 215–227. doi:10.1016/j.buildenv.2014.08.022
  • Elwy, I., Ibrahim, Y., Fahmy, M., & Mahdy, M. (2018). Outdoor microclimatic validation for hybrid simulation workflow in hot arid climates against ENVI-met and field measurements. Energy Procedia, 153, 29–34. doi:10.1016/j.egypro.2018.10.009
  • Farasati, F., Mozaffar, F., Nasrollahi, F., & Molaei Hashjin, N. (2018). Environmental quality analysis of interior spaces for local housing in mountainous regions of Guilan with an emphasis on thermal comfort (The case study: Dowsaledeh Village, Rudbar (Persian). Journal of Studies of Human Settlements Planning, 13(1), 1–17. https://jshsp.rasht.iau.ir/article_540501_1691a916f9882d39f90912ece75bb904.pdf
  • Fernandes, J., Mateus, R., Gervásio, H., Silva, S. M., & Bragança, L. (2019). Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance. Renewable Energy, 142, 345–363. doi:10.1016/j.renene.2019.04.098
  • Fernandes, J., Pimenta, C., Mateus, R., Silva, S. M., & Bragança, L. (2015). Contribution of Portuguese vernacular building strategies to indoor thermal comfort and occupants’ perception. Buildings, 5(4), 1242–1264. doi:10.3390/buildings5041242
  • Ghobadian, V. (2006). Climatic analysis of the traditional Iranian buildings. Tehran: University of Tehran Press.
  • Gorji Mahlabani, Y., & Daneshvar, K. (2010). Impact of climate on the principles of gilan traditional architecture (Persian). ARMANSHAHR, 3(4), 135–146.
  • Gorji Mahlabani, Y., & Yaran, A. (2010). Sustainable architecture solutions architecture Gilan compared with Japan (Persian). University of Tehran University College of Fine Arts, 2(41), 43–54.
  • IES, I. (2012). Standard LM-83-12. Approved method: IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE). United States of America: Illuminating Engineering Society of North America.
  • INBR. (2019). National Building Regulation of Iran, Number 19: Energy conservation in buildings. Tehran: Road, Housing, and Urban Development Research Center of Iran. (Persian)
  • Indraganti, M. (2010). Understanding the climate sensitive architecture of Marikal, a village in Telangana region in Andhra Pradesh, India. Building and Environment, 45(12), 2709–2722. doi:10.1016/j.buildenv.2010.05.030
  • Kamran kasmaii, H., Daneshjou, K., & Mofidi Shemirani, S. M. (2017). Gilan native habitat assessment body-centered sustainable by Sachs and energy simulation software (Persian). Naqshejahan, 7(2), 58–69.
  • Karaman, S., Ekici, B., Cubukcuoglu, C., Koyunbaba, B. K., & Kahraman, I. (2017). Design of rectangular façade modules through computational intelligence, eds. 2017 IEEE Congress on Evolutionary Computation (CEC).
  • Khakpour, M. (2005). Vernacular dwellings in rural settlements of Guilan (Persian). Univesity of Tehran College of Fine Arts, 22, 63–72.
  • Kheiri, F. (2018). A review on optimization methods applied in energy-efficient building geometry and envelope design. Renewable and Sustainable Energy Reviews, 92, 897–920. doi:10.1016/j.rser.2018.04.080
  • Konis, K., Gamas, A., & Kensek, K. (2016). Passive performance and building form: An optimization framework for early-stage design support. Solar Energy, 125, 161–179. doi:10.1016/j.solener.2015.12.020
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated.
  • Kyriakidis, A., Michael, A., Illampas, R., Charmpis, D. C., & Ioannou, I. (2018). Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe. Energy, 161, 1016–1027. doi:10.1016/j.energy.2018.07.124
  • Manzano-Agugliaro, F., Montoya, F. G., Sabio-Ortega, A., & García-Cruz, A. (2015). Review of bioclimatic architecture strategies for achieving thermal comfort. Renewable and Sustainable Energy Reviews, 49, 736–755. doi:10.1016/j.rser.2015.04.095
  • McNeel, R. A. O. (2010). Rhinoceros 3D, Version 6.0. Robert McNeel & Associates, Seattle, WA. https://www.rhino3d.com/
  • Meir, I. A., & Roaf, S. C. (2006). The future of the vernacular: Towards new methodologies for the understanding and optimization of the performance of vernacular buildings (Vernacular Architecture in the 21st Century). London and New York: Taylor & Francis, 215–230.
  • Michael, A., Demosthenous, D., & Philokyprou, M. (2017). Natural ventilation for cooling in Mediterranean climate: A case study in vernacular architecture of Cyprus. Energy and Buildings, 144, 333–345. doi:10.1016/j.enbuild.2017.03.040
  • Mohamed, M., Klingmann, A., & Samir, H. (2019). Examining the thermal performance of vernacular houses in Asir Region of Saudi Arabia. Alexandria Engineering Journal, 58(2), 419–428. doi:10.1016/j.aej.2019.03.004
  • Mohammadi, A., Saghafi, M. R., Tahbaz, M., & Nasrollahi, F. (2018). The study of climate-responsive solutions in traditional dwellings of Bushehr City in Southern Iran. Journal of Building Engineering, 16, 169–183. doi:10.1016/j.jobe.2017.12.014
  • Nguyen, A.-T., Tran, Q.-B., Tran, D.-Q., & Reiter, S. (2011). An investigation on climate responsive design strategies of vernacular housing in Vietnam. Building and Environment, 46(10), 2088–2106. doi:10.1016/j.buildenv.2011.04.019
  • Oikonomou, A., & Bougiatioti, F. (2011). Architectural structure and environmental performance of the traditional buildings in Florina, NW Greece. Building and Environment, 46(3), 669–689. doi:10.1016/j.buildenv.2010.09.012
  • Peker, E. (2022). Exploring locally-produced design solutions for thermal comfort: A socio-technical assessment. Open House International, 47(3), 549–570. doi:10.1108/OHI-12-2021-0266
  • Philokyprou, M., Michael, A., Thravalou, S., & Ioannou, I. (2018). Thermal performance assessment of vernacular residential semi-open spaces in Mediterranean climate. Indoor and Built Environment, 27(8), 1050–1068. doi:10.1177/1420326X17699037
  • Priya, R. S., Sundarraja, M., Radhakrishnan, S., & Vijayalakshmi, L. (2012). Solar passive techniques in the vernacular buildings of coastal regions in Nagapattinam, TamilNadu-India–a qualitative and quantitative analysis. Energy and Buildings, 49, 50–61. doi:10.1016/j.enbuild.2011.09.033
  • Radford, A. D., & Gero, J. S. (1980). On optimization in computer aided architectural design. Building and Environment, 15(2), 73–80. doi:10.1016/0360-1323(80)90011-6
  • Roudsari, M. S., & Pak, M. (2013). Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design.
  • Rutten, D., & McNeel, R. A. (2014). Grasshopper. https://www.grasshopper3d.com/
  • Salameh, M., Mushtaha, E., & El Khazindar, A. (2023). Improvement of thermal performance and predicted mean vote in city districts: A case in the United Arab Emirates. Ain Shams Engineering Journal, 14(7), 101999. doi:10.1016/j.asej.2022.101999
  • Shokuhirad, S. H. (2005). Guilan vernacular architecture, An example of organic architecture (Persian). Journal of Housing and Rural Environment, 112, 18–27.
  • Singh, M. K., Mahapatra, S., & Atreya, S. (2011). Solar passive features in vernacular architecture of North-East India. Solar Energy, 85(9). doi:10.1016/j.solener.2011.05.009
  • Soleymanpour, R., Parsaee, N., & Banaei, M. (2015). Climate comfort comparison of vernacular and contemporary houses of Iran (Persian). Procedia-Social and Behavioral Sciences, 201, 49–61. doi:10.1016/j.sbspro.2015.08.118
  • Tahbaz, M., & Jalilian, S. (2011). Compatibility indicators with climate in rural housing of Gilan province (Persian). Journal of Housing and Rural Environment, 30(135), 23–42.
  • Thravalou, S., Philokyprou, M., & Michael, A. (2018). The impact of window control on thermal performance. Investigating adaptable interventions in vernacular Mediterranean heritage. Journal of Architectural Conservation, 24(1), 41–59. doi:10.1080/13556207.2018.1456058
  • Tian, Z., Zhang, X., Jin, X., Zhou, X., Si, B., & Shi, X. (2018). Towards adoption of building energy simulation and optimization for passive building design: A survey and a review. Energy and Buildings, 158, 1306–1316. doi:10.1016/j.enbuild.2017.11.022
  • Toe, D. H. C., & Kubota, T. (2015). Comparative assessment of vernacular passive cooling techniques for improving indoor thermal comfort of modern terraced houses in hot–humid climate of Malaysia. Solar Energy, 114, 229–258. doi:10.1016/j.solener.2015.01.035
  • Torkashvand, A., & Raheb, G. (2014). Rural Housing Typology in Guilan Province (Persian). Enghelab-e-Eslami Housing Foundation: Deputy for Rural Housing and Reconstruction.
  • Turrin, M., Von Buelow, P., & Stouffs, R. (2011). Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Advanced Engineering Informatics, 25(4), 656–675. doi:10.1016/j.aei.2011.07.009
  • Vierlinger, R. (2013). Multi objective design interface.
  • Wenting, Y., Juan, X., Ziliang, L., Jiawei, Y., & Fuwen, L. (2022). A systematic review of indoor thermal environment of the vernacular dwelling climate responsiveness. Journal of Building Engineering, 53, 104514.
  • Yaran, A., & Mehranfar, A. (2016). Investigation the relationship between the attributes of vernacular residential architecture of Gilan and the attributes of modern architecture (Persian). ARMANSHAHR, 8(15), 169–179.
  • Yufka, M., Ekici, B., Cubukcuoglu, C., Chatzikonstantinou, I., & Sariyildiz, I. S. (2017). Multi-Objective skylight optimization for a healthcare facility foyer space. (Eds.). 2017 IEEE Congress on Evolutionary Computation (CEC).
  • Zhai, Z. J., & Previtali, J. M. (2010). Ancient vernacular architecture: Characteristics categorization and energy performance evaluation. Energy and Buildings, 42(3), 357–365. doi:10.1016/j.enbuild.2009.10.002
  • Zhang, A., Bokel, R., van den Dobbelsteen, A., Sun, Y., Huang, Q., & Zhang, Q. (2017). Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy and Buildings, 139, 371–384. doi:10.1016/j.enbuild.2017.01.048
  • Zhu, J., Tong, L., Li, R., Yang, J., & Li, H. (2020). Annual thermal performance analysis of underground cave dwellings based on climate responsive design. Renewable Energy, 145, 1633–1646. doi:10.1016/j.renene.2019.07.056
  • Zimmel, C. (2018). Octopus. Food4rhino. https://www.food4rhino.com/en/app/octopus
  • Zune, M., Rodrigues, L., & Gillott, M. (2020). Vernacular passive design in Myanmar housing for thermal comfort. Sustainable Cities and Society, 54, 101992. doi:10.1016/j.scs.2019.101992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.