135
Views
0
CrossRef citations to date
0
Altmetric
Articles

Enhancing BIM-BEM integration: solutions for efficient data exchange and energy performance assessment

&
Pages 596-623 | Received 02 Aug 2023, Accepted 09 Jan 2024, Published online: 29 Jan 2024

References

  • Abd-Elnaby, H. A., Reffat, R. M., & Morghany, E. (2021, March 13–15). Evaluating the role of building information modeling (BIM) in providing necessary data for the assessment of buildings energy performance. Al-Azhar Engineering Fifteenth International Conference, Cairo, Egypt.
  • Abdirad, H. (2017). Metric-based BIM implementation assessment: A review of research and practice. Architectural Engineering and Design Management, 13(1), 52–78. doi:10.1080/17452007.2016.1183474
  • ACCIONA. (2012). Deliverable 2.3: Recommendation and selection of BIM tools and standards for information exchange to be used by demo sites. NEED4B. Retrieved from https://smart-cities-marketplace.ec.europa.eu/sites/default/files/need4b_recommendation_and_selection_of_bim_tools_and_standards_for_information_exchange.pdf
  • Aksamija, A. (2012). BIM-based building performance analysis: Evaluation and simulation of design decisions. In Brambley, M. and Regnier, C. (Eds), Proceedings of the 2012 ACEEE Summer Study Energy Efficient Buildings (pp. 11–12).
  • Aleksandrowicz, O., & Mahdavi, A. (2018). The application of building performance simulation in the writing of architectural history: Analysing climatic design in 1960s Israel. Frontiers of Architectural Research, 7, 367–382. doi:10.1016/j.foar.2018.06.003
  • Aurangzeb, K., Aslam, S., Mohsin, S. M., & Alhussein, M. (2021). A fair pricing mechanism in smart grids for low energy consumption users. IEEE Access, 9, 22035–22044. doi:10.1109/ACCESS.2021.3056035
  • Autodesk-A.Sp.R. (2022). Support webpage analytical surface resolution. Retrieved December 3, 2022, from https://help.autodesk.com/view/RVT/2023/ESP/?guid=GUID-3FAD7687-575C-43B4-B21A-D6085DF72912
  • Autodesk-A.Su.R. (2022). Support webpage analytical surface resolution. Retrieved December 3, 2022, from https://help.autodesk.com/view/RVT/2023/ESP/?guid=GUID-3FAD7687-575C-43B4-B21A-D6085DF72912
  • Azevedo, N. C. d., & Tavares, S. F. (2020). Interoperabilidade entre as ferramentas Revit e OpenStudioOpen Studio para simulação termoenergética. PARC Pesquisa em Arquitetura e Construção, 11, e0190X01-19 .
  • Bataineh, K., & Al Rabee, A. (2022). A cost effective approach to design of energy efficient residential buildings. Frontiers of Architectural Research, 11(2), 297–307. doi:10.1016/j.foar.2021.10.004
  • Bazjanac, V., & Crawley, D. B. (1999). Industry foundation classes and interoperable commercial software in support of design of energy-efficient buildings. In Nakahara, N., Yoshida, H., Udagawa, M., and Hensen, J.L.M. (Eds), Proceedings of Building Simulation’99 (Vol. 2, pp. 661–668). Kyoto, Japan.
  • Building and Construction Authority (BCA). (2015). In Keung, J. (Ed.), BIM essential guide for transfer of BIM into building performance analysis (BPA) tools. Singapore. https://www.corenet.gov.sg/media/1588649/essential-guide-bim-to-bpa.pdf
  • Calquin, D. A. L. (2017). Automated building data exchange between BIM and BPS supporting building environmental assessment methods (BEAM). In Barnaby, C.S. and Wetter, M., (Eds.) Proceedings of the 15th IBPSA Conference. Building Simulation 2017 (pp. 1329–1333). San Francisco, CA: International Building Performance Simulation Association - IBPSA 10.26868/25222708.2017.339.
  • Christenson, M. (2023). Problematizing the model-building duality: Examining the new sacristy at S. Lorenzo’, Florence, Italy. Frontiers of Architectural Research, 12(4), 651–663. doi:10.1016/j.foar.2023.05.008
  • Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., … Glazer, J. (2001). EnergyPlus: Creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319–331. doi:10.1016/S0378-7788(00)00114-6
  • Deepa, K., Suryarajan, B., Nagaraj, V., Srinath, K., & Vasanth, K. (2019). Energy analysis of buildings. International Research Journal of Engineering and Technology (IRJET), 6(1), 1662–1666. Retrieved from https://www.irjet.net/archives/V6/i1/IRJET-V6I1310.pdf
  • Delavar, M., Bitsuamlak, G. T., Dickinson, J. K., & Costa, L. M. F. (2020). Automated BIM-based process for wind engineering design collaboration. Building Simulation, 13, 457–474. doi:10.1007/s12273-019-0589-2
  • Denzer, A. S., & Hedges, K. E. (2008). From CAD to BIM: Educational strategies for the coming paradigm shift. In Ettouney, M.(Ed.), Proceedings of the 2008 Architectural Engineering National Conference - Building Integration Solutions (pp. 1–11). Denver, Colorado, US: The Architectural Engineering Institute (AEI) of the ASCE. doi:10.1061/41002(328)6
  • Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238, 320–343. doi:10.1016/j.apenergy.2019.01.032
  • Gerrish, T., Ruikar, K., Cook, M., Johnson, M., & Phillip, M. (2017). Using BIM capabilities to improve existing building energy modelling practices. Engineering, Construction and Architectural Management, 24(2), 190–208. doi:10.1108/ECAM-11-2015-0181
  • Gong, X., Michel, P., & Cantin, R. (2019). Multiple-criteria decision analysis of BIM influences in building energy management. Building Simulation, 12(4), 641–652. doi:10.1007/s12273-019-0534-4
  • González, J., Soares, C. A. P., Najjar, M., & Haddad, A. N. (2021). Bim and BEM methodologies integration in energy-efficient buildings using experimental design. Buildings, 11(491), 491–428. doi:10.3390/buildings11100491
  • Hijazi, M., Kensek, K., & Konis, K. (2015). Bridging the gap: Supporting data transparency from BIM to BEM. Architectural Research Centers Consortium (ARCC) 2015 Conference – The Future of Architectural Research, Chicago, IL. Retrieved from https://www.brikbase.org/sites/default/files/ARCC2015_50_hijazi.pdf
  • Hjelseth, E. (2010). Exchange of relevant information in BIM objects defined by the role- and life-cycle information model. Architectural Engineering and Design Management, 6, 279–287. doi:10.3763/aedm.2010.IDDS5
  • Ilter, D. A., & Ergen, E. (2015). Analysis of the information flow from BIM to energy simulation programs. 12th Annual Conference on Organization, Technology and Management in Construction, Croatia.
  • Ji, W., Yuan, Y., Sun, L., & Zhao, X. (2022). Recent progress in modelling and simulation technologies of energy efficiency and environmental quality in the built environment. Building Simulation, 15(7), 1175–1176. doi:10.1007/s12273-022-0893-0
  • Kamel, E., & Memari, A. M. (2019). Review of BIM’s application in energy simulation: Tools, issues, and solutions. Automation in Construction, 97, 164–180. doi:10.1016/j.autcon.2018.11.008
  • Liu, Z., Lu, Y., & Peh, L. C. (2019). A review and scientometric analysis of global building information modeling (BIM) research in the architecture, engineering and construction (AEC) industry. Buildings, 9(210), 210–234. doi:10.3390/buildings9100210
  • Miller, C., Thomas, D., Irigoyen, S. D., Hersberger, C., Nagy, Z., Rossi, D., … Schlueter, A. (2014). BIM-extracted EnergyPlusEnergy Plus model calibration for retrofit analysis of a historically listed building in Switzerland. In Knight, D. (Ed.), Building simulation conference (pp. 331–338). Atlanta, GA: ASHRAE/IBPSA.
  • Mohanta, A., Das, S., & Mohanty, R. N. (2021). Building envelope trade-off method integrated with BIM-based framework for energy-efficient building envelope. Architectural Engineering and Design Management, 17(5–6), 516–536. doi:10.1080/17452007.2021.1941741
  • Okakpu, A., GhaffarianHoseini, A., Tookey, J., Haar, J., & Hoseini, A. G. (2019). An optimisation process to motivate effective adoption of BIM for refurbishment of complex buildings in New Zealand. Frontiers of Architectural Research, 8(4), 646–661. doi:10.1016/j.foar.2019.06.008
  • Olawumi, T. O., & Chan, D. W. M. (2021). Green-building information modelling (Green-BIM) assessment framework for evaluating sustainability performance of building projects: A case of Nigeria. Architectural Engineering and Design Management, 17(5–6), 458–477. doi:10.1080/17452007.2020.1852910
  • Petrova, E., Pauwels, P., Svidt, K., & Jensen, R. L. (2019). Towards data-driven sustainable design: Decision support based on knowledge discovery in disparate building data. Architectural Engineering and Design Management, 15(5), 334–356. doi:10.1080/17452007.2018.1530092
  • Pezeshki, Z., Soleimani, A., & Darabi, A. (2019). Application of BEM and using BIM database for BEM: A review. Journal of Building Engineering, 23, 1–17. doi:10.1016/j.jobe.2019.01.021
  • Porsani, G. B., de Lersundi, D. V., Gutiérrez, A. S., & Bandera, C. F. (2021). Interoperability between building information modelling (BIM) and building energy model (BEM). Applied Sciences, 11(2167), 1–20. doi:10.3390/app11052167/
  • Reta, T. (2017). Leveraging a building information model to carry out building energy performance analysis (Bachelor thesis). Helsinki Metropolia University of Applied Sciences.
  • Samuel, E. I., Joseph-Akwara, E., & Richard, A. (2017). Assessment of energy utilization and leakages in buildings with building information model energy. Frontiers of Architectural Research, 6(1), 29–41. doi:10.1016/j.foar.2017.01.002
  • Senave, M., & Boeykens, S. (2015). Link between BIM and energy simulation. Building information modelling (BIM) in design, construction and operations. WIT Transactions on The Built Environment, 149, 341–352. doi:10.2495/BIM150291
  • Sharafutdinova, A. (2015). Bim in practice. Bachelor’s thesis, Saimaa University of Applied Sciences Technology, Lappeenranta. Retrieved from https://www.theseus.fi/handle/10024/97994
  • Wang, D., Pang, X., Wang, W., Qi, Z., Ji, Y., & Yin, R. (2020). Evaluation of the dynamic energy performance gap of green buildings: Case studies in China. Building Simulation, 13(6), 1191–1204. doi:10.1007/s12273-020-0653-y
  • Yan, D., Zhou, X., An, J., Kang, X., Bu, F., Chen, Y., … Peng, J. (2022). DeST 3.0: A new-generation building performance simulation platform. Building Simulation, 15(11), 1849–1868. doi:10.1007/s12273-022-0909-9
  • Yang, C. C., Soh, C. S., & Yap, V. V. (2017). A non-intrusive appliance load monitoring for efficient energy consumption based on naive Bayes classifier. Sustainable Computing: Informatics and Systems, 14, 34–42. doi:10.1016/j.suscom.2017.03.001
  • Yang, Y., Pan, Y., Zeng, F., Lin, Z., & Li, C. (2022). A gbXML reconstruction workflow and tool development to improve the geometric interoperability between BIM and BEM. Buildings, 12(221), 221–221. doi:10.3390/buildings12020221
  • Yarramsetty, S., Rohullah, M. S., Sivakumar, M. V. N., & Anand Raj, P. (2020). An investigation on energy consumption in residential building with different orientation: A BIM approach. Asian Journal of Civil Engineering, 21, 253–266. doi:10.1007/s42107-019-00189-z
  • Zanni, M. A., Soetanto, R., & Ruikar, K. (2017). Towards a BIM-enabled sustainable building design process: Roles, responsibilities, and requirements. Architectural Engineering and Design Management, 13(2), 101–129. doi:10.1080/17452007.2016.1213153

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.