88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of urban density on energy retrofit of building stock: case study of Spain

, &
Received 24 Jul 2023, Accepted 12 Jan 2024, Published online: 25 Jan 2024

References

  • Ahmadian, E., Sodagar, B., Mills, G., & Bingham, C. (2019). Correlation of urban built form, density and energy performance. Journal of Physics: Conference Series, 1343(1), 012005. doi:10.1088/1742-6596/1343/1/012005
  • Almeida-Costa, A., & Benta, A. (2016). Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. Journal of Cleaner Production, 112, 2308–2317. doi:10.1016/j.jclepro.2015.10.077
  • Alvarez-Palau, E. J., Martí-Henneberg, J., & Solanas-Jiménez, J. (2019). Urban growth and long-term transformations in Spanish cities since the mid-nineteenth century: A methodology to determine changes in urban density. Sustainability (Switzerland), 11(24), 6948. doi:10.3390/SU11246948
  • Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81–92. doi:10.1016/j.buildenv.2012.11.009
  • Beccali, M., Cellura, M., Fontana, M., Longo, S., & Mistretta, M. (2013). Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits. Renewable and Sustainable Energy Reviews, 27, 283–293. doi:10.1016/j.rser.2013.05.040
  • Buyle, M., Braet, J., & Audenaert, A. (2013). Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews, 26(October), 379–388. doi:10.1016/j.rser.2013.05.001
  • Cabeza, L. F., Barreneche, C., Miró, L., Morera, J. M., Bartolí, E., & Inés Fernández, a. (2013). Low carbon and low embodied energy materials in buildings: A review. Renewable and Sustainable Energy Reviews, 23, 536–542. doi:10.1016/j.rser.2013.03.017
  • Campolongo, F., Cariboni, J., & Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software, 22, 1509–1518. doi:10.1016/j.envsoft.2006.10.004
  • Commission to the European Parliament. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.
  • D’Angelo, J., Harm, E., Bartoszek, J., Baumgardner, G., Corrigan, M., Cowsert, J., … Yeaton, B. (2008). Warm-Mix Asphalt: European Practice.
  • Ding, G. (2004). The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities (PhD thesis). Sydney: University of Technology.
  • Domingo, D., van Vliet, J., & Hersperger, A. M. (2023). Long-term changes in 3D urban form in four Spanish cities. Landscape and Urban Planning, 230, 104624. doi:10.1016/j.landurbplan.2022.104624
  • Ecoinvent. (2019). Ecoinvent.
  • European Commission. (2011). Roadmap to a Resource Efficient Europe.
  • European Parliament. (2018). Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.
  • Fattahi Tabasi, S., Rafizadeh, H. R., Andaji Garmaroudi, A., & Banihashemi, S. (2023). Optimizing urban layouts through computational generative design: Density distribution and shape optimization. Architectural Engineering and Design Management, 1–21. doi:10.1080/17452007.2023.2243272
  • Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 25, 749–758. doi:10.1016/j.rser.2013.05.057
  • Gálvez Ruiz, D., Diaz Cuevas, P., Braçe, O., & Garrido-Cumbrera, M. (2018). Developing an index to measure sub-municipal level urban sprawl. Social Indicators Research, 140(3), 929–952. doi:10.1007/s11205-017-1801-3
  • Gascón Alvarez, E., Feickert, K., Ismail, M. A., Mueller, C. T., & Norford, L. K. (2023). Integrated urban heat sinks for low-carbon neighbourhoods: Dissipating heat to the ground and sky through building structures. Journal of Building Performance Simulation, 1–21. doi:10.1080/19401493.2023.2265335
  • Hammond, G., & Jones, C. (2011). Inventory of carbon and energy (ICE) version 2.0. (2.0).
  • Heiselberg, P., Brohus, H., Hesselholt, A., Rasmussen, H., Seinre, E., & Thomas, S. (2009). Application of sensitivity analysis in design of sustainable buildings. Renewable Energy, 34, 2030–2036.
  • Heo, Y., Choudhary, R., & Augenbroe, G. A. (2012). Calibration of building energy models for retrofit analysis under uncertainty. Energy and Buildings, 47, 550–560. doi:10.1016/j.enbuild.2011.12.029
  • Huang, P. J., Huang, S. L., & Marcotullio, P. J. (2019). Relationships between CO2 emissions and embodied energy in building construction: A historical analysis of Taipei. Building and Environment, 155, 360–375. doi:10.1016/j.buildenv.2019.03.059
  • IDAE Instituto para la Diversificación y Ahorro de la Energía. (2019). SPAHOUSEC II: Análisis estadístico del consumo de gas natural en las viviendas principales con calefacción individual.
  • IDAE Instituto para la Diversificación y Ahorro de la Energía. (2021a). Estructura sectorial del consumo de energía final.
  • IDAE Instituto para la Diversificación y Ahorro de la Energía. (2021b). Informe anual de consumos por usos del sector residencial.
  • IEA International Energy Agency. (2021). 2021 Global status report for buildings and construction.
  • Kohansal, M. E., Akaf, H. R., Gholami, J., & Moshari, S. (2022). Investigating the simultaneous effects of building orientation and thermal insulation on heating and cooling loads in different climate zones. Architectural Engineering and Design Management, 18(4), 410–433. doi:10.1080/17452007.2021.1901220
  • Lausselet, C., Borgnes, V., & Brattebø, H. (2019). LCA modelling for zero emission neighbourhoods in early stage planning. Building and Environment, 149(October 2018), 379–389. doi:10.1016/j.buildenv.2018.12.034
  • Lotteau, M., Loubet, P., Pousse, M., Dufrasnes, E., & Sonnemann, G. (2015). Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. Building and Environment, 93(P2), 165–178. doi:10.1016/j.buildenv.2015.06.029
  • Lotteau, M., Loubet, P., & Sonnemann, G. (2017). An analysis to understand how the shape of a concrete residential building influences its embodied energy and embodied carbon. Energy and Buildings, 154, 1–11. doi:10.1016/j.enbuild.2017.08.048
  • Manuel Naredo, J., Jiménez Romera Ángela Matesanz Parellada Juan Jesús González Báez Gabriela Sánchez Calvete, C., Álvarez Mora María Castrillo Romón Jose María Ezquiaga Fernando Gaja Díaz Luis Andrés Orive Juan Luis de las Rivas Sanz Luis Santos Ganges, A., del Rosario Alonso Ibáñez, M., Pozuelo Guilló, P., & Jiménez Romera, C. (2010). White paper on sustainability in Spanish Urban Planning Ministry of Housing Government of Spain Direction José Fariña Tojo Production and management Agustín Hernández Aja Coordination with Ministry of Housing.
  • Meteorological State Agency. (2020). Weather Normal Values.
  • Ministerio de Fomento. (2013). Orden FOM/1635/2013 de 10 de septiembre por la que se actualiza el DB-HE, del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006.
  • Ministerio de Fomento. (2017). Documento descriptivo climas de referencia. Available at https://www.codigotecnico.org/pdf/Documentos/HE/20170202-DOC-DB-HE-0-Climas%20de%20referencia.pdf
  • Mohammadpourkarbasi, H., & Sharples, S. (2013). Eco-retrofitting very old dwellings: Current and future energy and carbon performance for two UK cities. PLEA2013 – 29th conference, sustainable architecture for a renewable future, Munich, Germany, 10–12 September 2013.
  • Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161–174.
  • Mostafavi, N., Heris, M. P., Gándara, F., & Hoque, S. (2021). The relationship between urban density and building energy consumption. Buildings, 11(10), 455. doi:10.3390/buildings11100455
  • NBE-CT 79. (1979). Norma Básica de Edificación NBE-CT-79, sobre condiciones térmicas en los edificios.
  • Nematchoua, M. K., Asadi, S., & Reiter, S. (2022). Estimation, analysis and comparison of carbon emissions and construction cost of the two tallest buildings located in United States and China. International Journal of Environmental Science and Technology, 19(10), 9313–9328. doi:10.1007/s13762-021-03799-w
  • Nguyen, A. T., & Reiter, S. (2015). A performance comparison of sensitivity analysis methods for building energy models. Building Simulation, 8(6), 651–664. doi:10.1007/s12273-015-0245-4
  • Pacheco-Torres, R. (2014). Evaluación y propuesta de modelo para el cálculo de la demanda energética en edificios residenciales a partir del estudio de la altura y la integración de sistemas de energía solar fotovoltaica (Doctoral dissertation, in Spanish). University of Granada, Granada, Spain.
  • Pacheco-Torres, R., Heo, Y., & Choudhary, R. (2016). Efficient energy modelling of heterogeneous building portfolios. Sustainable Cities and Society, 27, 49–64. doi:10.1016/j.scs.2016.08.001
  • Rasmussen, F. N., Birkved, M., & Birgisdóttir, H. (2020). Low-carbon design strategies for new residential buildings–lessons from architectural practice. Architectural Engineering and Design Management, 16(5), 374–390. doi:10.1080/17452007.2020.1747385
  • Resch, E., André, R., Kvamsdal, T., & Lohne, J. (2016). Impact of urban density and building height on energy use in cities. Energy Procedia, 96(1876), 800–814. doi:10.1016/j.egypro.2016.09.142
  • Rey, E., Lufkin, S., Renaud, P., & Perret, L. (2013). The influence of centrality on the global energy consumption in Swiss neighborhoods. Energy and Buildings, 60, 75–82. doi:10.1016/j.enbuild.2013.01.002
  • Rodrigues, C., & Freire, F. (2014). Integrated life-cycle assessment and thermal dynamic simulation of alternative scenarios for the roof retrofit of a house. Building and Environment, 81, 204–215.
  • Roldán-Fontana, J., Pacheco-Torres, R., Jadraque-Gago, E., & Ordóñez, J. (2015). Optimization of CO2 emissions in the design phases of urban planning, based on geometric characteristics: A case study of a low-density urban area in Spain. Sustainability Science, 12, 65–85. doi:10.1007/s11625-015-0342-4
  • Santos, J., Bressi, S., Cerezo, V., Lo, D., & Dauvergne, M. (2018). Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces : A comparative analysis. Resources, Conservation & Recycling, 138(August), 283–297. doi:10.1016/j.resconrec.2018.07.012
  • Sartori, T., & Calmon, J. L. (2019). Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighbourhood dwellings. Journal of Building Engineering, 21(May 2018), 158–172. doi:10.1016/j.jobe.2018.10.009
  • SIMLAB. V2.2. (2011). Simulation environment for uncertainty and sensitivity analysis. Developed by the Joint Research Center of the European Commission.
  • Solís-Guzmán, J., Marrero, M., & Ramírez-de-Arellano, A. (2013). Methodology for determining the ecological footprint of the construction of residential buildings in Andalusia (Spain). Ecological Indicators, 25, 239–249. doi:10.1016/j.ecolind.2012.10.008
  • Spentzou, E., Cook, M. J., & Emmitt, S. (2022). Low-energy cooling and ventilation refurbishments for buildings in a Mediterranean climate. Architectural Engineering and Design Management, 18(4), 473–494. doi:10.1080/17452007.2021.1926898
  • Stephan, A., Crawford, R. H., & De Myttenaere, K. (2013). Multi-scale life cycle energy analysis of a low-density suburban neighbourhood in Melbourne, Australia. Building and Environment, 68, 35–49.
  • Thormark, C. (2002). A low energy building in a life cycle — Its embodied energy, energy need for operation and recycling potential. Building and Environment, 37, 429–435.
  • Tian, W. (2013). A review of sensitivity analysis methods in building energy analysis. Renewable and Sustainable Energy Reviews, 20, 411–419. doi:10.1016/j.rser.2012.12.014
  • Typology Approach for Building Stock Energy Assessment – IEE Project TABULA. (2012). TABULA web tool.
  • Vilches, A., Garcia-Martinez, A., & Sanchez-Montañes, B. (2017). Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, 135, 286–301. doi:10.1016/j.enbuild.2016.11.042
  • Zabalza Bribián, I., Aranda Usón, A., & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520. doi:10.1016/j.buildenv.2009.05.001
  • Zhou, Y., Tam, V. W., & Le, K. N. (2023). Sensitivity analysis of design variables in life-cycle environmental impacts of buildings. Journal of Building Engineering, 65, 105749. doi:10.1016/j.jobe.2022.105749

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.