148
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the influence of perforated façade skins on indoor illuminance level: a case study

, &
Received 09 Nov 2023, Accepted 19 Feb 2024, Published online: 01 Mar 2024

References

  • Abdelsalam, T., & Rihan, G. M. (2013). The impact of sustainability trends on housing design identity of Arab cities. HBRC Journal, 9, 159–172. https://doi.org/10.1016/j.hbrcj.2013.03.002
  • Aelenei, L., Gaspari, J., & Marchi, L. (2022). Addressing rising energy needs of EU cities of tomorrow: Positive energy districts. In E. Antonini & J. Gaspari (Eds.), Architectures for next generation EU cities (pp. 79–94). Franco Angeli.
  • Ahmad, A., Kumar, A., Prakash, O., & Aman, A. (2020). Daylight availability assessment and the application of energy simulation software – a literature review. Materials Science for Energy Technologies, 3, 679–689. https://doi.org/10.1016/j.mset.2020.07.002
  • Ala-Juusela, M., ur Rehman, H., Hukkalainen, M., & Reda, F. (2021). Positive energy building definition with the framework, elements and challenges of the concept. Energies, 14, 6260. https://doi.org/10.3390/en14196260
  • Attia, S., Eleftheriou, P., Xeni, F., Morlot, R., Ménézo, C., Kostopoulos, V., … Hidalgo-Betanzos, J. M. (2017). Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy and Buildings, 155, 439–458. https://doi.org/10.1016/j.enbuild.2017.09.043
  • Ayoub, M. (2020). A review on light transport algorithms and simulation tools to model daylighting inside buildings. Solar Energy, 198, 623–642. https://doi.org/10.1016/j.solener.2020.02.018
  • Barbosa, S., & Alberto, K. C. (2019). Effect of the double skin façade material on the thermal performance of the educational building in tropical climate. Architectural Science Review, 62, 206–215. https://doi.org/10.1080/00038628.2019.1586640
  • Bellia, L., Pedace, A., & Fragliasso, F. (2015). The impact of the software’s choice on dynamic daylight simulations’ results: A comparison between Daysim and 3ds Max Design®. Solar Energy, 122, 249–263. https://doi.org/10.1016/j.solener.2015.08.027
  • Bhai, M. A. Y., Abdelkader, M., Neseem, A., & Mustafa, A. (2022). Impact of the geometric form of the building envelopes on the efficiency of natural lighting in the office space. IOP Conference Series: Earth and Environmental Science, 992, 012001. https://doi.org/10.1088/1755-1315/992/1/012001
  • Blanco, J. M., Buruaga, A., Cuadrado, J., & Zapico, A. (2019). Assessment of the influence of façade location and orientation in indoor environment of double-skin building envelopes with perforated metal sheets. Building and Environment, 163, 106325. https://doi.org/10.1016/j.buildenv.2019.106325
  • CEN European Committee for Standardization. (2014). 12464-2, Light and lighting-Lighting of work places Part 2: Outdoor work places.
  • CEN European Committee for Standardization. (2018). EN 17034, Daylight in buildings.
  • Chaiwiwatworakul, P., Chirarattananon, S., & Rakkwamsuk, P. (2009). Application of automated blind for daylighting in tropical region. Energy Conversion and Management, 50, 2927–2943. https://doi.org/10.1016/j.enconman.2009.07.008
  • Chi, D. A., Moreno, D., Esquivias, P. M., & Navarro, J. (2017a). Optimization method for peforated solar screen design to improve daylighting using orthogonal arrays and climate-based daylight modelling. Journal of Building Performance Simulation, 10, 144–160. https://doi.org/10.1080/19401493.2016.1197969
  • Chi, D. A., Moreno, D., & Navarro, J. (2017b). Design optimisation of perforated solar façades in order to balance daylighting with thermal performance. Building and Environment, 125, 383–400. https://doi.org/10.1016/j.buildenv.2017.09.007
  • Chi, D. A., Moreno, D., & Navarro, J. (2021). Impact of perforated solar screens on daylight availability and low energy use in offices. Advances in Building Energy Research, 15, 117–141. https://doi.org/10.1080/17512549.2018.1550439
  • Dabaj, B., Rahbar, M., & Fakhr, B. V. (2022). Impact of different shading devices on daylight performance and visual comfort of A four opening sides’ Reading room In rasht. Journal of Daylighting, 9, 97–116. https://doi.org/10.15627/jd.2022.7
  • Dagher, S., Akhozheya, B., & Slimani, H. (2022). Energy analysis studying the effect of solar shading on daylight factors and cooling hours in an extreme weather. Energy Reports, 8, 443–448. https://doi.org/10.1016/J.EGYR.2022.10.231
  • Day, J. K., Futrell, B., Cox, R., Ruiz, S. N., Amirazar, A., Hosseinzadeh Zarrabi, A., & Azarbayjani, M. (2019). Blinded by the light: Occupant perceptions and visual comfort assessments of three dynamic daylight control systems and shading strategies. Building and Environment, 107–121.
  • Dezeen Sanaa. (2021). Retrieved June 8, 2023, from https://www.Dezeen.Com/2021/12/29/Sanaa-Bocconi-University-Milan/
  • Dialux. (n.d.). https://www.dialux.com/fileadmin/documents/DIALux_evo-_New_calculation_method.pdf
  • Dialux software. (2023). https://www.Dialux.Com/En-GB/Dialux
  • EL-Mahdy, D., & Ali, M. (2023). Assessing the solar radiation performance of self-shaded 3D-printed clay-based façades. Architectural Engineering and Design Management, 1–20. https://doi.org/10.1080/17452007.2023.2285325
  • EN. (2018). EN 12665 Light and lighting – Basic terms and criteria for specifying lighting requirements.
  • EN. (2021). EN 12464 Light and lighting—Lighting of work places. Part 1: Indoor work places.
  • EN. (2022). EN 17037 Daylight in buildings.
  • European Parliament. (2010). Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (recast). Official Journal of the European Union, 13–35. https://doi.org/10.3000/17252555.L_2010.153.eng
  • European Parliament, European Parliament P9_TA(2023) 0068. (2023). Energy performance of buildings (recast).
  • Fakra, A. H., Miranville, F., Boyer, H., & Guichard, S. (2011). Development of a new model to predict indoor daylighting: Integration in CODYRUN software and validation. Energy Conversion and Management, 52, 2724–2734. https://doi.org/10.1016/j.enconman.2011.01.019
  • Fedorczak-Cisak, M., Nowak, K., & Furtak, M. (2019). Analysis of the effect of using external venetian blinds on the thermal comfort of users of highly glazed office rooms in a transition season of temperate climate-case study. Energies, 13, https://doi.org/10.3390/en13010081
  • Figueiro, M. G., Rea, M. S., Rea, A. C., & Stevens, R. G. (2002). Daylight and productivity – A field study. In ACEEE summer study Proceedings, Washington, DC.
  • Figueroa-Lopez, A., Arias, A., Oregi, X., & Rodríguez, I. (2021). Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. Journal of Building Engineering, 43, 102607. https://doi.org/10.1016/J.JOBE.2021.102607
  • Gaspari, J. (2020). Climate responsive building envelopes. Franco Angeli.
  • Globa, A., Costin, G., Tokede, O., Wang, R., Khoo, C. K., & Moloney, J. (2022). Hybrid kinetic facade: Fabrication and feasibility evaluation of full-scale prototypes. Architectural Engineering and Design Management, 18, 791–811. https://doi.org/10.1080/17452007.2021.1941739
  • GlobalABC/IEA/UNEP. (2020). GlobalABC Roadmap for Buildings and Construction: Towards a zero-emission, efficient and resilient buildings and construction sector, Paris.
  • He, W., Hu, Z., Luo, B., Hong, X., Sun, W., & Ji, J. (2015). The thermal behavior of Trombe wall system with venetian blind: An experimental and numerical study. Energy and Buildings, 104, 395–404. https://doi.org/10.1016/j.enbuild.2015.06.078
  • Hemmerling, M., Seegers, M., & Witzel, D. (2023). Calculation of energy saving potential for lighting with DIALux evo. Energy and Buildings, 278, 112475. https://doi.org/10.1016/j.enbuild.2022.112475
  • IEA. (2021). World Energy Outlook 2021.
  • IES Daylight Metrics Committee. (2012). IES spatial daylight autonomy (sDA) and annual sunlight exposure (ASE) (Report No. LM-83-12).
  • ISO. (2004). ISO 15469 Spatial distribution of daylight – CIE standard general sky.
  • Jelle, B. P., Gustavsen, A., & Baetens, R. (2012). Innovative high performance thermal building insulation materials – todays state-of-the-art and beyond tomorrow. Proceedings of the building enclosure science & technology (BEST 3 – 2012).
  • Katunský, D., & Lopušniak, M. (2012). Impact of shading structure on energy demand and on risk of summer overheating ina low energy building. Energy Procedia, 14, 1311–1316. https://doi.org/10.1016/j.egypro.2011.12.1094
  • Kim, Y.-S., Lim, J.-S., Hong, S.-K., Kwun, J.-B., Choi, A.-S., & Kim, Y.-S. (2010). Luminous characteristics of shading materials for office buildings: Perforated panels vs. fabric blinds. LEUKOS, 6, 227–240. https://doi.org/10.1582/LEUKOS.2010.06.03003
  • Kirimtat, A., Koyunbaba, B. K., Chatzikonstantinou, I., & Sariyildiz, S. (2016). Review of simulation modeling for shading devices in buildings. Renewable and Sustainable Energy Reviews, 53, 23–49. https://doi.org/10.1016/j.rser.2015.08.020
  • Koo, S. Y., Yeo, M. S., & Kim, K. W. (2010). Automated blind control to maximize the benefits of daylight in buildings. Building and Environment, 45, 1508–1520. https://doi.org/10.1016/j.buildenv.2009.12.014
  • Köppen, W., & Geiger, R. (1936). Das geographische system der klimate. Handbuch Der Klimatologie, 7–30. https://doi.org/10.3354/cr01204
  • Kottek, F. R. M., Grieser, J., Beck, C., & Rudolf, B. (2006). World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  • Liu, M., Wittchen, K. B., & Heiselberg, P. K. (2015). Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark. Applied Energy, 145, 43–51. https://doi.org/10.1016/j.apenergy.2015.02.003
  • Loutzenhiser, P. G., Maxwell, G. M., & Manz, H. (2007). An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows. Energy, 32, 1855–1870. https://doi.org/10.1016/j.energy.2007.02.005
  • Maamari, F., Fontoynont, M., & Adra, N. (2006). Application of the CIE test cases to assess the accuracy of lighting computer programs. Energy and Buildings, 38, 869–877. https://doi.org/10.1016/j.enbuild.2006.03.016
  • Mangkuto, R. A. (2016). Validation of DIALux 4.12 and DIALux evo 4.1 against the analytical test cases of CIE 171:2006. LEUKOS, 12, 139–150. https://doi.org/10.1080/15502724.2015.1061438
  • Mardaljevic, J., Waskett, R. K., & Painter, B. (2015). Electrochromic glazing in buildings: A case study. In Electrochromic materials and devices (pp. 571–592).
  • Martinelli, L., Lin, T. P., & Matzarakis, A. (2015). Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Building and Environment, 92, https://doi.org/10.1016/j.buildenv.2015.04.013
  • Material District. (2014). https://materialdistrict.com/article/homeostatic-facade-system/
  • Moraes, L. N., da Silva, A. S., & Claro, A. (2013). Evaluation of the software lightool and apolux according to protocols of technical report CIE 171:2006. In 13th conference of international building performance simulation association, proceedings of BS2013, Chambéry.
  • Murano, G., Ballarini, I., Dirutigliano, D., Primo, E., & Corrado, V. (2017). The significant imbalance of nZEB energy need for heating and cooling in Italian climatic zones. Energy Procedia, 126, 258–265. https://doi.org/10.1016/j.egypro.2017.08.150
  • Naik, N. S., Elzeyadi, I., & Cartwright, V. (2022). Dynamic solar screens for high-performance buildings – a critical review of perforated external shading systems. Architectural Science Review, 65, 217–231. https://doi.org/10.1080/00038628.2022.2063248
  • Pastore, L., & Andersen, M. (2019). Detecting trends and further development potential of contemporary façade design for workspaces. Architectural Engineering and Design Management, 15, 267–281. https://doi.org/10.1080/17452007.2018.1561414
  • Preto, S. (2020). Dynamic Façades: Optimization of natural light at workplaces. In J. Charytonowicz, & C. Falcão (Eds.), Advances in human factors in architecture, sustainable urban planning and infrastructure. AHFE 2019. Advances in intelligent systems and computing, vol 966. (pp. 392–402). Cham: Springer. https://doi.org/10.1007/978-3-030-20151-7_37
  • Roshan, M., & Salisu, A. (2016). Assessing anidolic daylighting system for efficient daylight in open plan office in the tropics. Journal of Building Engineering, 8, 58–69. https://doi.org/10.1016/j.jobe.2016.07.002
  • Rossi, M., Pandharipande, A., Caicedo, D., Schenato, L., & Cenedese, A. (2015). Personal lighting control with occupancy and daylight adaptation. Energy and Buildings, 105, 263–272. https://doi.org/10.1016/j.enbuild.2015.07.059
  • Saelens, D., Parys, W., Roofthooft, J., & de la Torre, A. T. (2013). Assessment of approaches for modeling louver shading devices in building energy simulation programs. Energy and Buildings, 60, 286–297. https://doi.org/10.1016/j.enbuild.2012.10.056
  • Sanati, L., & Utzinger, M. (2013). The effect of window shading design on occupant use of blinds and electric lighting. Building and Environment, 64, 67–76. https://doi.org/10.1016/j.buildenv.2013.02.013
  • Sayed, A. (2012). Advanced building technologies for sustainability. John Wiley & Sons.
  • Sharma, M. K., Preet, S., Mathur, J., Chowdhury, A., & Mathur, S. (2022). Thermal performance analysis of naturally ventilated and perforated sheet based double skin facade system for hot summer conditions. International Journal of Ventilation, 21, 263–283. https://doi.org/10.1080/14733315.2021.1901003
  • Shum, C., & Zhong, L. (2023). A review of smart solar shading systems and their applications: Opportunities in cold climate zones. Journal of Building Engineering, 64, 105583. https://doi.org/10.1016/j.jobe.2022.105583
  • Spano D, T. A., Armiento, M., Aslam, M. F., Bacciu, V., Bigano, A., Bosello, F., … Harris, R. (2021). G20 climate risk Atlas. Impacts, policy, economics. European Union. https://doi.org/10.25424/cmcc/g20_climaterisk
  • Srisamranrungruang, T., & Hiyama, K. (2020). Balancing of natural ventilation, daylight, thermal effect for a building with double-skin perforated facade (DSPF). Energy and Buildings, 210, 109765. https://doi.org/10.1016/j.enbuild.2020.109765
  • Srisamranrungruang, T., & Hiyama, K. (2021). Correlations between building performances and design parameters of double-skin facade utilizing perforated screen. Japan Architectural Review, 4, 533–544. https://doi.org/10.1002/2475-8876.12222
  • Stazi, F. (2019). Advanced building envelope components. Butterworth-Heinemann.
  • Stazi, F., Marinelli, S., Di Perna, C., & Munafò, P. (2014). Comparison on solar shadings: Monitoring of the thermo-physical behaviour, assessment of the energy saving, thermal comfort, natural lighting and environmental impact. Solar Energy, 105, 512–528. https://doi.org/10.1016/j.solener.2014.04.005
  • Su, X., Zhang, L., Liu, Z., Luo, Y., Lian, J., & Liang, P. (2020). Daylighting performance simulation and analysis of translucent concrete building envelopes. Renewable Energy, 154, 754–766. https://doi.org/10.1016/j.renene.2020.03.041
  • Sun, L., Lu, L., & Yang, H. (2012). Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Applied Energy, 90, 233–240. https://doi.org/10.1016/j.apenergy.2011.01.062
  • Technology in architecture. (2017). Homeostatic Facade. https://technologyinarchitecture.wordpress.com/2017/08/13/homeostatic-facade/
  • Tol, R. S. J. (2017). Population and trends in the global mean temperature. Atmósfera, 30, 121–135.
  • Uribe, D., Vera, S., Bustamante, W., McNeil, A., & Flamant, G. (2019). Impact of different control strategies of perforated curved louvers on the visual comfort and energy consumption of office buildings in different climates. Solar Energy, 190, 495–510. https://doi.org/10.1016/j.solener.2019.07.027
  • Vailati, C., Bachtiar, E., Hass, P., Burgert, I., & Rüggeberg, M. (2018). An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, https://doi.org/10.1016/j.enbuild.2017.10.042
  • Van De Meugheuvel, N., Pandharipande, A., Caicedo, D., & Van Den Hof, P. P. J. (2014). Distributed lighting control with daylight and occupancy adaptation. Energy and Buildings, 75, 321–329. https://doi.org/10.1016/j.enbuild.2014.02.016
  • Zhang, S., & Birru, D. (2012). An open-loop venetian blind control to avoid direct sunlight and enhance daylight utilization. Solar Energy, 86, 860–866. https://doi.org/10.1016/j.solener.2011.12.015
  • Zhang, T., & Yang, H. (2019). Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes. Applied Energy, 250, 834–845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.