150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Image enhancement-based detection of concrete cracks under turbid water bodies

, ORCID Icon, , , &
Received 20 Oct 2023, Accepted 21 Feb 2024, Published online: 01 Mar 2024

References

  • Armstrong, R. A., Pizarro, O., & Roman, C. (2019). Underwater robotic technology for imaging mesophotic coral ecosystems. In T. C. L. Bridge, Y. Loya, & K. A. Puglise (Eds.), Mesophotic coral ecosystems (pp. 973–988). Springer. https://doi.org/10.1007/978-3-319-92735-0_51.
  • Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2
  • Cao, K., Peng, Y. T., & Cosman, P. C. (2018). Underwater image restoration using deep networks to estimate background light and scene depth. Paper presented at the 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI).
  • Cao, W., & Li, J. (2022). Detecting large-scale underwater cracks based on remotely operated vehicle and graph convolutional neural network. Frontiers of Structural and Civil Engineering, 16(11), 1378–1396. https://doi.org/10.1007/s11709-022-0855-8
  • Chen, C., Wang, J., Zou, L., & Zhang, F. (2012). Underwater dam image crack segmentation based on mathematical morpholog. Paper presented at the Applied Mechanics and Materials.
  • Chen, D., Huang, B., & Kang, F. (2023). A review of detection technologies for underwater cracks on concrete dam surfaces. Applied Sciences, 13(6), 3564. https://doi.org/10.3390/app13063564
  • Chen, Q., Chamoli, S. K., Yin, P., Wang, X., & Xu, X. (2019). Active mode single pixel imaging in the highly turbid water environment using compressive sensing. IEEE Access, 7, 159390–159401. https://doi.org/10.1109/ACCESS.2019.2950896
  • Dong, C., Loy, C. C., & Tang, X. (2016). Accelerating the super-resolution convolutional neural network. In: B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision – ECCV 2016. ECCV 2016. Lecture notes in computer science() (Vol. 9906). Springer. https://doi.org/10.1007/978-3-319-46475-6_25
  • Ebrahimkhanlou, A., Athanasiou, A., Hrynyk, T., Bayrak, O., & Salamone, S. (2019). Fractal and multifractal analysis of crack patterns in prestressed concrete girders. Journal of Bridge Engineering, 24(7), 04019059. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001427
  • Feng, D., & Feng, M. Q. (2017). Experimental validation of cost-effective vision-based structural health monitoring. Mechanical Systems and Signal Processing, 88, 199–211. https://doi.org/10.1016/j.ymssp.2016.11.021
  • Gao, W., Zhang, G., Li, H., Huo, L., & Song, G. (2018). A novel time reversal sub–group imaging method with noise suppression for damage detection of plate–like structures. Structural Control and Health Monitoring, 25(3), e2111. https://doi.org/10.1002/stc.2111
  • Gao, Y., Lin, J., He, F., Yin, S., & Zhu, J. (2016). A monocular vision and inclinometer combined system for 6DOF measurement of double shield TBM. Sensors and Actuators A: Physical, 249, 155–162. https://doi.org/10.1016/j.sna.2016.08.021
  • Gol'Dshtein, R. V., & Mosolov, A. B. (1992). Fractal cracks. Journal of Applied Mathematics and Mechanics (PMM), 56(4), 563–571. https://doi.org/10.1016/0021-8928(92)90012-W
  • Grządziel, A. J. R. S. (2022). Application of remote sensing techniques to identification of underwater airplane wreck in shallow water environment: Case study of the Baltic Sea, Poland. Remote Sensing, 14(20), 5195. https://doi.org/10.3390/rs14205195
  • Hassan, N., Ullah, S., & Bhatti, N. (2021). The Retinex based improved underwater image enhancement. Multimedia Tools and Applications, 80, 1839–1857. https://doi.org/10.1007/s11042-020-09752-2
  • Khan, A., Ali, S. S. A., Anwer, A., Adil, S. H., & Meriaudeau, F. (2018). Subsea pipeline corrosion estimation by restoring and enhancing degraded underwater images. IEEE Access, 6, 40585–40601. https://doi.org/10.1109/ACCESS.2018.2855725
  • Lee, Y., & Yoo, H. (2016). Low-cost 3D motion capture system using passive optical markers and monocular vision. Optik International Journal for Light & Electron Optics, 130, 1397–1407. https://doi.org/10.1016/j.ijleo.2016.11.174
  • Li, K., Wang, J., & Qi, D. (2019). An intelligent warning method for diagnosing underwater structural damage. Algorithms, 12(9), 183. https://doi.org/10.3390/a12090183
  • Lin, M., Chen, Q., & Yan, S. (2013). Network In Network. http://doi.org/10.48550/arXiv.1312.4400
  • Liu, J. H., Jiang, R. N., Sun, J. H., Shi, P. F., & Yang, Y. F. (2017). Concrete damage evolution and three-dimensional reconstruction by integrating CT test and fractal theory. Journal of Materials in Civil Engineering, 29(9), 04017122. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001932
  • Lu, H., Li, Y., Uemura, T., Kim, H., & Serikawa, S. (2018). Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Generation Computer Systems, 82, 142–148. https://doi.org/10.1016/j.future.2018.01.001
  • Ma, Y., Wu, Y., Li, Q., Zhou, Y., & Yu, D. (2022). ROV-based binocular vision system for underwater structure crack detection and width measurement. Multimedia Tools and Applications, 1–25.
  • Moustafa, A., Niri, E. D., Farhidzadeh, A., & Salamone, S. (2014). Corrosion monitoring of post-tensioned concrete structures using fractal analysis of guided ultrasonic waves. Structural Control and Health Monitoring, 21(3), 438–448. https://doi.org/10.1002/stc.1586
  • Qi, Z., Liu, D., Zhang, J., & Chen, J. (2022). Micro-concrete crack detection of underwater structures based on convolutional neural network. Machine Vision and Applications, 33(5), 1–19.
  • Qi, Z., Zhang, J., & Liu, D. (2020). A CNN-based method for concreate crack detection in underwater environments.
  • Qian, J., Li, J., Wang, Y., Liu, J., Wang, J., & Zheng, D. (2021). Underwater image recovery method based on hyperspectral polarization imaging. Optics Communications, 484, 126691. https://doi.org/10.1016/j.optcom.2020.126691
  • Qiao, T., Chen, L., Pang, Y., Yan, G., & Miao, C. (2017). Integrative binocular vision detection method based on infrared and visible light fusion for conveyor belts longitudinal tear. Measurement, 110, 192–201. https://doi.org/10.1016/j.measurement.2017.06.032
  • Sharma, S., & D'Amico, S. J. A. A. (2016). Comparative assessment of techniques for initial pose estimation using monocular vision. Acta Astronautica, 123(jun.-jul.), 435–445. https://doi.org/10.1016/j.actaastro.2015.12.032
  • Shi, P., Fan, X., Ni, J., & Wang, G. (2016). A detection and classification approach for underwater dam cracks. Structural Health Monitoring, 15(5), 541–554. https://doi.org/10.1177/1475921716651039
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, 27-30 June 2016, 2818–2826. https://doi.org/10.1109/CVPR.2016.308.
  • Tang, D., & Marangoni, A. G. (2006). 3D fractal dimension of fat crystal networks. Chemical Physics Letters, 433(1-3), 248–252. https://doi.org/10.1016/j.cplett.2006.11.057
  • Upadhyay, S., & Papadakis, M. (2019). Lifting the veil: Enhancing images in turbid aqueous environments. Paper presented at the Wavelets and Sparsity XVIII.
  • Xie, H., Peng, G., Wang, F., & Yang, C. (2018). Underwater image restoration based on background light estimation and dark channel prior. Acta Optica Sinica, 38(01), 18–27.
  • Yang, L., Liang, J., Zhang, W., Ju, H., Ren, L., & Shao, X. (2019). Underwater polarimetric imaging for visibility enhancement utilizing active unpolarized illumination. Optics Communications, 438, 96–101. https://doi.org/10.1016/j.optcom.2018.12.022
  • Yang, M., Wu, Y., & Feng, G. (2023). Underwater environment laser ghost imaging based on Walsh speckle patterns. Frontiers in Physics, 11, 33.
  • Yavari, A. (2002). Generalization of Barenblatt's cohesive fracture theory for fractal cracks. Fractals.
  • Yu, T., Wang, X., Xi, S., Mu, Q., & Zhu, Z. (2023). Underwater polarization imaging for visibility enhancement of moving targets in turbid environments. Optics Express, 31(1), 459–468. https://doi.org/10.1364/OE.477243
  • Zamen, S., & Dehghan-Niri, E. (2020). Fractal analysis of nonlinear ultrasonic waves in phase-space domain as a quantitative method for damage assessment of concrete structures. NDT & E International, 111(Apr.), 102235. https://doi.org/10.1016/j.ndteint.2020.102235
  • Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Paper presented at the ECCV 2014.
  • Zhang, R., Gui, X. Y., Cheng, H. Y., & Chu, J. K. (2021). Underwater image recovery utilizing polarimetric imaging based on neural networks. Applied Optics, 60(27), 8419–8425. https://doi.org/10.1364/AO.431299
  • Zhang, Z., Fan II, X., Xie, Y., & Xu, H. (2018). An edge detection method based artificial bee colony for underwater dam crack image. Paper presented at the Biomedical Imaging and Sensing Conference.
  • Zheng, S., Wang, H., Dong, S., Wang, F., & Situ, G. (2021). Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network. Photonics Research, 9(5), B220. https://doi.org/10.1364/PRJ.416246
  • Zhou, Y., Wu, Q., Yan, K., Feng, L., & Xiang, W. (2018). Underwater image restoration using color-line model. IEEE Transactions on Circuits and Systems for Video Technology, 29(3), 907–911. https://doi.org/10.1109/TCSVT.2018.2884615
  • Zhu, Z., German, S., & Brilakis, I. (2011). Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Automation in Construction, 20(7), 874–883. https://doi.org/10.1016/j.autcon.2011.03.004
  • Zong, X., Chen, Z., & Wang, D. (2021). Local-CycleGAN: A general end-to-end network for visual enhancement in complex deep-water environment. Applied Intelligence, 51, 1947–1958. https://doi.org/10.1007/s10489-020-01931-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.