133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimising building envelope and insulation materials for energy efficiency and life-cycle cost in Cypriot residences

ORCID Icon, &
Received 17 Aug 2023, Accepted 23 Feb 2024, Published online: 03 Mar 2024

References

  • Abdullah, A. H., Abu Bakar, S. K., & Abd Rahman, I. (2013). Simulation of office’s operative temperature using Ecotect Model. International Journal of Construction Technology and Management, 1(1), 33–37.
  • Albatayneh, A. (2021). Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Reports, 7, 2081–2093. doi:10.1016/j.egyr.2021.04.011
  • AlizadehKharazi, B., Alvanchi, A., & Taghaddos, H. (2020). A novel building information modeling-based method for improving cost and energy performance of the building envelope. International Journal of Engineering, 33(11). doi:10.5829/ije.2020.33.11b.06
  • Axaopoulos, I., Axaopoulos, P., & Gelegenis, J. (2014). Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind. Applied Energy, 117, 167–175. doi:10.1016/j.apenergy.2013.12.008
  • Axaopoulos, I., Axaopoulos, P., Panayiotou, G., Kalogirou, S., & Gelegenis, J. (2015). Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics. Energy, 90(Part 1), 939–952. doi:10.1016/j.energy.2015.07.125
  • Berawi, M. A., Miraj, P., Windrayani, R., & Berawi, A. R. B. (2019). Stakeholders’ perspectives on green building rating: A case study in Indonesia. Heliyon, 5(3), e01328. doi:10.1016/j.heliyon.2019.e01328
  • Bienvenido-Huertas, D., Sánchez-García, D., & Rubio-Bellido, C. (2020). Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings. Energy, 190, 116448. doi:10.1016/j.energy.2019.116448
  • Bonakdar, F., Kalagasidis, A. S., & Mahapatra, K. (2017). The implications of climate zones on the cost-optimal level and cost-effectiveness of building envelope energy renovation and space heat demand reduction. Buildings, 7(2), 39. doi:10.3390/buildings7020039
  • Braulio-Gonzalo, M., & Bovea, M. D. (2017). Environmental and cost performance of building’s envelope insulation materials to reduce energy demand: Thickness optimisation. Energy and Buildings, 150, 527–545. doi:10.1016/j.enbuild.2017.06.005
  • Bueno, C., Pereira, L. M., & Fabricio, M. M. (2018). Life cycle assessment and environmental-based choices at the early design stages: An application using building information modelling. Architectural Engineering and Design Management, 14(5), 332–346. doi:10.1080/17452007.2018.1458593
  • Chung, L. P., & Ossen, D. R.. (2012). Comparison of integrated environmental solutions and autodesk ecotect simulation software accuracy with field measurement for temperature. In M. H. Ahmad, S. A. Iskandar, F. C. Oluwole, & R. H. Nik (Eds.), Sustainability in built environment I (pp. 85–102). Johor Bahru: Institute Sultan Iskandar.
  • Chwieduk, D. (2003). Towards sustainable-energy buildings. Applied Energy, 76(1–3), 211–217. doi:10.1016/S0306-2619(03)00059-X
  • Economidou, M., Atanasiu, B., Despret, C., Maio, J., Nolte, I., Rapf, O., … Verheyen, L. (2011). Europe’s buildings under the microscope: A country-by-country review of the energy performance of buildings. Buildings Performance Institute Europe. https://bpie.eu/wp-content/uploads/2015/10/HR_EU_B_under_microscope_study.pdf
  • European Commission. (2018). A clean planet for all: A European strategic long term vision for a prosperous, modern, competitive and climate neutral economy (COM/2018/773 final). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773
  • European Commission. (2020). Energy efficiency in buildings. https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-lut-17_en
  • Florides, G. A., Tassou, S. A., Kalogirou, S. A., & Wrobel, L. C. (2002). Measures used to lower building energy consumption and their cost effectiveness. Applied Energy, 73(3–4), 299–328. doi:10.1016/S0306-2619(02)00119-8
  • Hasan, A. (1999). Optimizing insulation thickness for buildings using life cycle cost. Applied Energy, 63(2), 115–124. doi:10.1016/S0306-2619(99)00023-9
  • IEA. (2020). Sustainable recovery. International Energy Agency. https://www.iea.org/reports/sustainable-recovery
  • IEA. (2021a). Key world energy statistics 2021. International Energy Agency. https://www.iea.org/reports/key-world-energy-statistics-2021
  • IEA. (2021b). Energy efficiency 2021. Paris, France: International Energy Agency. https://www.iea.org/reports/energy-efficiency-2021.
  • Ilkan, M., Erdil, E., & Egelioglu, F. (2005). Renewable energy resources as an alternative to modify the load curve in Northern Cyprus. Energy, 30(5), 555–572. doi:10.1016/j.energy.2004.04.059
  • Islam, H., Jollands, M., & Setunge, S. (2015). Life cycle assessment and life cycle cost implication of residential buildings—A review. Renewable and Sustainable Energy Reviews, 42, 129–140. doi:10.1016/j.rser.2014.10.006
  • Jaber, S., & Ajib, S. (2011). Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy and Buildings, 43(8), 1829–1834. doi:10.1016/j.enbuild.2011.03.024
  • Kibtek. (2022). Tarifeler – KIBRIS TÜRK ELEKTRİK KURUMU. Retrieved from https://www.kibtek.com/tarifeler
  • King, L. C., & van den Bergh, J. C. J. M. (2018). Implications of net energy-return-on-investment for a low-carbon energy transition. Nature Energy, 3, 334–340. doi:10.1038/s41560-018-0116-1
  • Kumar, D., Alam, M., Zou, P. X. W., Sanjayan, J. G., & Memon, R. A. (2020). Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews, 131, 110038. doi:10.1016/j.rser.2020.110038
  • Lin, Y.-H., Tsai, K.-T., Lin, M.-D., & Yang, M.-D. (2016). Design optimization of office building envelope configurations for energy conservation. Applied Energy, 171, 336–346. doi:10.1016/j.apenergy.2016.03.018
  • Mesimeris, T., Kythreotou, N., Menelaou, M., Rousos, C., Karapitta-Zachariadou, C., Partasides, G., … Kleanthous, A. (2020). Cyprus’ Integrated national energy and climate plan for the period 2021–2030. Republic of Cyprus. https://meci.gov.cy/en/useful-information/strategic-planning/cyprus-integrated-national-energy-and-climate-plan-for-the-period-2021-2030
  • Mohanta, A., Das, S., & Mohanty, R. N. (2021). Building envelope trade-off method integrated with BIM-based framework for energy-efficient building envelope. Architectural Engineering and Design Management, 17(5–6), 516–536. doi:10.1080/17452007.2021.1941741
  • Oduyemi, O., & Okoroh, M. (2016). Building performance modelling for sustainable building design. International Journal of Sustainable Built Environment, 5(2), 461–469. doi:10.1016/j.ijsbe.2016.05.004
  • Ozay, N. (2005). A comparative study of climatically responsive house design at various periods of Northern Cyprus architecture. Building and Environment, 40(6), 841–852. doi:10.1016/j.buildenv.2004.08.024
  • Panayiotou, G. P., Kalogirou, S. A., Florides, G. A., Maxoulis, C. N., Papadopoulos, A. M., Neophytou, M., … Georgakis, G. (2010). The characteristics and the energy behaviour of the residential building stock of Cyprus in view of Directive 2002/91/EC. Energy and Buildings, 42(11), 2083–2089. doi:10.1016/j.enbuild.2010.06.018
  • Peng, C. (2016). Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, 112, 453–465. doi:10.1016/j.jclepro.2015.08.078
  • Ponmalar, V., & Ramesh, B. (2014). Energy efficient building design and estimation of energy savings from daylighting in chennai. Energy Engineering, 111(4), 59–80. doi:10.1080/01998595.2014.10846858
  • Pramesti, P. U., Ramandhika, M., Hasan, M. I., & Werdiningsih, H. (2021). The influence of building envelope design in energy efficiency: OTTV calculation of multi storey building. IOP Conference Series: Earth and Environmental Science, 623(1), 012075. doi:10.1088/1755-1315/623/1/012075
  • Pyrgou, A., & Santamouris, M. (2021). Macroeconomic, demographic and climatic indicators for household electricity consumption model in Cyprus. International Journal of Sustainable Energy, 41(3), 205–214. doi:10.1080/14786451.2021.1921778
  • Qian, D., Li, Y., Niu, F., & O’Neill, Z. (2019). Nationwide savings analysis of energy conservation measures in buildings. Energy Conversion and Management, 188, 1–18. doi:10.1016/j.enconman.2019.03.035
  • Raouf, A. M. I., & Al-Ghamdi, S. G. (2018). Building information modelling and green buildings: Challenges and opportunities. Architectural Engineering and Design Management, 15(1), 1–28. doi:10.1080/17452007.2018.1502655
  • Sadeghifam, A. N., Meynagh, M. M., Tabatabaee, S., Mahdiyar, A., Memari, A., & Ismail, S. (2019). Assessment of the building components in the energy efficient design of tropical residential buildings: An application of BIM and statistical Taguchi method. Energy, 188, 116080. doi:10.1016/j.energy.2019.116080
  • Serghides, D. K., Dimitriou, S., & Katafygiotou, M. C. (2016). Towards European targets by monitoring the energy profile of the Cyprus housing stock. Energy and Buildings, 132, 130–140. doi:10.1016/j.enbuild.2016.06.096
  • Seyis, S. (2020). Mixed method review for integrating building information modeling and life-cycle assessments. Building and Environment, 173, 106703. doi:10.1016/j.buildenv.2020.106703
  • Trisnawan, D. (2018). Ecotect design simulation on existing building to enhance its energy efficiency. IOP Conference Series: Earth and Environmental Science, 105, 012117. doi:10.1088/1755-1315/105/1/012117
  • Yu, J., Yang, C., Tian, L., & Liao, D. (2009). A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China. Applied Energy, 86(11), 2520–2529. doi:10.1016/j.apenergy.2009.03.010
  • Zachariadis, T. (2010). Forecast of electricity consumption in Cyprus up to the year 2030: The potential impact of climate change. Energy Policy, 38(2), 744–750. doi:10.1016/j.enpol.2009.10.019
  • Žigart, M., Kovačič Lukman, R., Premrov, M., & Žegarac Leskovar, V. (2018). Environmental impact assessment of building envelope components for low-rise buildings. Energy, 163, 501–512. doi:10.1016/j.energy.2018.08.149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.