2,353
Views
103
CrossRef citations to date
0
Altmetric
Articles

Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles

, , &
Pages 290-300 | Received 05 Nov 2016, Accepted 09 Jun 2017, Published online: 04 Jul 2017

References

  • Behl, M. and Lendlein, A., 2007. Shape-memory polymers. Materials Today, 10 (4), 20–28. doi: 10.1016/S1369-7021(07)70047-0
  • Berg, G.J., et al., 2014. New directions in the chemistry of shape memory polymers. Polymer. Available from: http://www.sciencedirect.com/science/article/pii/S0032386114006612
  • Berman, B., 2012. 3-D printing: the new industrial revolution. Business Horizons. Available from: http://www.sciencedirect.com/science/article/pii/S0007681311001790
  • Budun, S., et al., 2016. Morphological and mechanical analysis of electrospun shape memory polymer fibers. Applied Surface Science, 380, 294–300. doi: 10.1016/j.apsusc.2015.12.235
  • Chan Vili, Y.Y.F., 2007. Investigating smart textiles based on shape memory materials. Textile Research Journal, 77 (5), 290–300. doi: 10.1177/0040517507078794
  • Clare, A., et al., 2008. Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. International Journal of Mechanics and Materials in Design, 4 (2), 181–187. doi: 10.1007/s10999-007-9032-4
  • Dadbakhsh, S., et al., 2014. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Advanced Engineering Materials, 16 (9), 1140–1146. doi: 10.1002/adem.201300558
  • Duigou, L., et al., 2016. 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Materials & Design, 96, 106–114. doi: 10.1016/j.matdes.2016.02.018
  • Ge, Q., et al., 2014. Active origami by 4D printing. Smart Materials and Structures, 23 (9), 094007. doi: 10.1088/0964-1726/23/9/094007
  • Gladman, S., et al., 2016. Biomimetic 4D printing. Nature Materials, 15 (4), 413–418. doi: 10.1038/nmat4544
  • Gross, B., et al., 2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 86 (7), 3240–3253. doi: 10.1021/ac403397r
  • Haberland, C., et al., 2014. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Materials and Structures, 23 (10), 104002. doi: 10.1088/0964-1726/23/10/104002
  • Hamedi, M., et al., 2009. Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. doi: 10.1002/adma.200802681
  • Hu, J. and Chen, S., 2010. A review of actively moving polymers in textile applications. Journal of Materials Chemistry, 20, 3346–3355. doi:10.1039/b922872a.
  • Hu, J., Lu, J., and Zhu, Y., 2008. New developments in elastic fibers. Polymer Reviews. doi: 10.1080/15583720802020186
  • Hu, J., et al., 2012. A review of stimuli-responsive polymers for smart textile applications. Smart materials and structures. Available from: http://iopscience.iop.org/article/10.1088/0964-1726/21/5/053001/meta
  • Huang, S., et al., 2013. Additive manufacturing and its societal impact: a literature review. The International Journal of Advanced Manufacturing Technology, 67 (5–8), 1191–1203. doi: 10.1007/s00170-012-4558-5
  • Inoue, K., Yamashiro, M., and Iji, M., 2009. Recyclable shape-memory polymer: poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. Journal of Applied Polymer Science, 112 (2), 876–885. doi: 10.1002/app.29469
  • Jani, J.M., et al., 2014. A review of shape memory alloy research, applications and opportunities. Materials & Design. Available from: http://www.sciencedirect.com/science/article/pii/S0261306913011345
  • Jing, X., et al., 2015. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polymer Engineering & Science, 55 (1), 70–80. doi: 10.1002/pen.23873
  • Lee, Y., et al., 2015. Sequential folding using light-activated polystyrene sheet. Scientific Reports, 5, 1703. doi: 10.1038/srep16544
  • Lewis, C. and Dell, E., 2016. A review of shape memory polymers bearing reversible binding groups. Journal of Polymer Science Part B: Polymer Physics, 54 (14), 1340–1364. doi: 10.1002/polb.23994
  • Little, A. and Christie, R., 2010a. Textile applications of photochromic dyes. Part 1: Establishment of a methodology for evaluation of photochromic textiles using traditional colour measurement instrumentation. Coloration Technology, 126 (3), 157–163. doi: 10.1111/j.1478-4408.2010.00241.x
  • Little, A. and Christie, R., 2010b. Textile applications of photochromic dyes. Part 2: factors affecting the photocoloration of textiles screen-printed with commercial photochromic dyes. Coloration Technology, 126 (3), 164–170. doi: 10.1111/j.1478-4408.2010.00242.x
  • Liu, C., Qin, H., and Mather, P.T., 2007. Review of progress in shape-memory polymers. Journal of Materials Chemistry, 17 (16), 1543–1558. doi: 10.1039/b615954k
  • Mao, Y., et al., 2015. Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5, 1651. doi: 10.1038/srep13616
  • Martin, O. and Avérous, L., 2001. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42 (14), 6209–6219. doi: 10.1016/S0032-3861(01)00086-6
  • Melnikova, R., Ehrmann, A., and Finsterbusch, K., 2014. 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering, 62 (1), 012018. doi: 10.1088/1757-899X/62/1/012018
  • Meng, Q. and Hu, J., 2008. Study on poly (e-caprolactone)-based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polymers for Advanced Technologies, 19, 131–136. doi:10.1002/pat.985.
  • Radjabian, M., Kish, M.H., and Mohammadi, N., 2012. Structure–property relationship for poly(lactic acid) (PLA) filaments: physical, thermomechanical and shape memory characterization. Journal of Polymer Research, 19 (6), 63. doi: 10.1007/s10965-012-9870-0
  • Shishkovsky, I., Yadroitsev, I., and Smurov, I., 2012. Direct selective laser melting of nitinol powder. Physics Procedia, 39, 447–454. doi: 10.1016/j.phpro.2012.10.060
  • Stoppa, M. and Chiolerio, A., 2014. Wearable electronics and smart textiles: a critical review. Sensors, 14 (7), 11957–11992. doi: 10.3390/s140711957
  • Stylios, G.K. and Wan, T., 2007. Shape memory training for smart fabrics. Transactions of the Institute of Measurement and Control, 29 (3–4), 321–336. Available from: http://journals.sagepub.com/doi/abs/10.1177/0142331207069479 doi: 10.1177/0142331207069479
  • Tibbits, S., 2014. 4D Printing: multi-material shape change. Architectural Design, 84. doi: 10.1002/ad.1710
  • Walker, J., et al., 2016. Process development and characterization of additively manufactured nickel–titanium shape memory parts. Journal of Intelligent Material Systems and Structures, 27 (19), 2653–2660. doi: 10.1177/1045389X16635848
  • Wang, W., et al., 2006. Polylactide-based polyurethane and its shape-memory behavior. European Polymer Journal, 42 (6), 1240–1249. doi: 10.1016/j.eurpolymj.2005.11.029
  • Wu, J., et al., 2016. Multi-shape active composites by 3D printing of digital shape memory polymers. Scientific Reports, 6, 773. doi: 10.1038/srep24224
  • Yang, W., et al., 2014. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers, 6 (8), 2287–2308. doi: 10.3390/polym6082287
  • Yu, K., et al., 2015. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Procedia IUTAM, 12, 193–203. doi: 10.1016/j.piutam.2014.12.021
  • Zhang, W., Chen, L., and Zhang, Y., 2009. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer, 50 (5), 1311–1315. doi: 10.1016/j.polymer.2009.01.032
  • Zhang, Q., Zhang, K., and Hu, G., 2016. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Scientific Reports, 6, 644. doi: 10.1038/srep22431
  • Zhang, Q., et al., 2015. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Scientific Reports, 5, 487. doi: 10.1038/srep08936
  • Zhu, Y., et al., 2006. Development of shape memory polyurethane fiber with complete shape recoverability. Smart Materials and Structures, 15 (5), 1385. doi: 10.1088/0964-1726/15/5/027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.