410
Views
9
CrossRef citations to date
0
Altmetric
Articles

Influence of surface pores on selective laser melted parts under lubricated contacts: a case study of a hydraulic spool valve

, , , &
Pages 395-408 | Received 24 Apr 2019, Accepted 17 Jun 2019, Published online: 30 Jun 2019

References

  • Aboulkhair, N. T., N. M. Everitt, I. Ashcroft, and C. Tuck. 2014. “Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting.” Additive Manufacturing 1–4: 77–86. doi: 10.1016/j.addma.2014.08.001
  • Almangour, B., D. Grzesiak, and J. M. Yang. 2017. “In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting.” Journal of Alloys and Compounds 706: 409–418. doi: 10.1016/j.jallcom.2017.01.149
  • Amini, S., S. Abbaszadeh, and M. Lotfi. 2017. “Measuring Wear-Resistance of AISI 1.7225 Steel Under Various Heat Treatments: Hydraulic Spool Valve.” Measurement 98: 179–185. doi: 10.1016/j.measurement.2016.12.004
  • Catchpole-Smith, S., N. Aboulkhair, L. Parry, C. Tuck, I. A. Ashcroft, and A. Clare. 2017. “Fractal Scan Strategies for Selective Laser Melting of ‘Unweldable’ Nickel Superalloys.” Additive Manufacturing 15: 113–122. doi: 10.1016/j.addma.2017.02.002
  • Chen, Y., W. Gong, and K. Rui. 2016. “Coupling Behavior between Adhesive and Abrasive Wear Mechanism of Aero-Hydraulic Spool Valves.” Chinese Journal of Aeronautics 29 (4): 1142–1150. doi: 10.1016/j.cja.2015.12.017
  • Dilip, J. J. S., G. D. J. Ram, T. L. Starr, and B. Stucker. 2016. “Selective Laser Melting of HY100 Steel: Process Parameters.” Microstructure and Mechanical Properties. Additive Manufacturing 13: 49–60.
  • Dražić, S., N. Sladoje, and J. Lindblad. 2016. “Estimation of Feret’s Diameter from Pixel Coverage Representation of a Shape.” Pattern Recognition Letters 80: 37–45. doi: 10.1016/j.patrec.2016.04.021
  • Franke, R., I. Haase, M. Klemm, and R. Zenker. 2010. “Friction and Wear Behaviour of Electron Beam Surface Treated Aluminium Alloys AlSi10Mg(Cu) and AlSi35.” Wear 269 (11): 921–929. doi: 10.1016/j.wear.2010.08.002
  • Ge, X. 2018. A Study on Processing a Spool in a Proportional Directional Valve Using Selective Laser Melting and its Friction Performance in the Reciprocating Contact. Hangzhou: Zhejiang University.
  • Gebhardt, A., F. Schmidt, J. Hötter, W. Sokalla, and P. Sokalla. 2010. “Additive Manufacturing by Selective Laser Melting the Realizer Desktop Machine and its Application for the Dental Industry.” Physics Procedia 5: 543–549. doi: 10.1016/j.phpro.2010.08.082
  • Gong, H., K. Rafi, N. V. Karthik, T. Starr, and B. Stucker. 2013. “Defect Morphology of Ti-6Al-4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting.” Paper Read at 24th Annual International Solid Freeform Fabrication Symposium.
  • Gu, D., H. Wang, F. Chang, D. Dai, P. Yuan, Y. Hagedorn, and W. Meiners. 2014. “Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-Form Nanocomposites with Tailored Microstructures and Properties.” Physics Procedia 56 (56): 108–116. doi: 10.1016/j.phpro.2014.08.153
  • Gu, D., H. Wang, D. Dai, C. Fei, W. Meiners, Y. C. Hagedorn, K. Wissenbach, I. Kelbassa, and R. Poprawe. 2015. “Densification Behavior, Microstructure Evolution, and Wear Property of TiC Nanoparticle Reinforced AlSi10Mg Bulk-Form Nanocomposites Prepared by Selective Laser Melting.” Journal of Laser Applications 27 (S1): S17003. doi: 10.2351/1.4870877
  • Kempen, K., E. Yasa, L. Thijs, J. P. Kruth, and J. Van Humbeeck. 2011. “Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel.” Physics Procedia 12: 255–263. doi: 10.1016/j.phpro.2011.03.033
  • Kurzynowski, T., K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus. 2018. “Correlation between Process Parameters, Microstructure and Properties of 316 L Stainless Steel Processed by Selective Laser Melting.” Materials Science and Engineering: A 718: 64–73. doi: 10.1016/j.msea.2018.01.103
  • Li, X., and U. Olofsson. 2015. “FZG Gear Efficiency and Pin-on-Disc Frictional Study of Sintered and Wrought Steel Gear Materials.” Tribology Letters 60 (1): 9. doi: 10.1007/s11249-015-0582-6
  • Li, X., M. Sosa, and U. Olofsson. 2015. “A Pin-On-Disc Study of the Tribology Characteristics of Sintered Versus Standard Steel Gear Materials.” Wear 340–341: 31–40. doi: 10.1016/j.wear.2015.01.032
  • Lore, T., K. Karolien, K. Jean-Pierre, and V. H. Jan. 2013. “Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder.” Acta Materialia 61 (5): 1809–1819. doi: 10.1016/j.actamat.2012.11.052
  • Lu, Y., S. Wu, Y. Gan, T. Huang, C. Yang, J. Lin, and J. Lin. 2015. “Study On the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy.” Optics & Laser Technology 75: 197–206. doi: 10.1016/j.optlastec.2015.07.009
  • Majdič, F., I. Velkavrh, and M. Kalin. 2013. “Improving the Performance of a Proportional 4/3 Water–Hydraulic Valve by Using a Diamond-Like-Carbon Coating.” Wear 297 (1–2): 1016–1024. doi: 10.1016/j.wear.2012.11.060
  • Martin, F., C. García, and Y. Blanco. 2015. “Influence of Residual Porosity on the Dry and Lubricated Sliding Wear of a Powder Metallurgy Austenitic Stainless Steel.” Wear 328–329: 1–7. doi: 10.1016/j.wear.2015.01.025
  • Menezes, P. L., S. Kishore, V. Kailas, and M. R. Lovell. 2009. “Friction and Transfer Layer Formation in Polymer–Steel Tribo-System: Role of Surface Texture and Roughness Parameters.” Tribology Transactions 52 (5): 611–622. doi: 10.1080/10402000902825754
  • Nanbu, T., N. Ren, Y. Yasuda, D. Zhu, and Q. J. Wang. 2008. “Micro-Textures in Concentrated Conformal-Contact Lubrication: Effects of Texture Bottom Shape and Surface Relative Motion.” Tribology Letters 29 (3): 241–252. doi: 10.1007/s11249-008-9302-9
  • Peng, T., S. Xu, H. Zhang, and Y. Zhu. 2018. “Influence of Exposure Time On Energy Consumption and Mechanical Properties of SLM Fabricated Parts.” Rapid Prototyping Journal 24 (9): 1428–1435. doi: 10.1108/RPJ-05-2017-0078
  • Prashanth, K. G., B. Debalina, Z. Wang, P. F. Gostin, A. Gebert, M. Calin, U. Kuehn, M. Kamaraj, S. Scudino, and J. Eckert. 2014. “Tribological and Corrosion Properties of Al-12Si Produced by Selective Laser Melting.” Journal of Materials Research 29 (17): 2044–2054. doi: 10.1557/jmr.2014.133
  • Sallica-Leva, E., A. L. Jardini, and J. B. Fogagnolo. 2013. “Microstructure and Mechanical Behavior of Porous Ti–6Al–4 V Parts Obtained by Selective Laser Melting.” Journal of the Mechanical Behavior of Biomedical Materials 26 (30): 98–108. doi: 10.1016/j.jmbbm.2013.05.011
  • Su, Q. 2016. Switching Delay Analysis and Compensation Methods for the Pilot Operated Proportional Directional Valves. Hangzhou: Zhejiang University.
  • Sun, Z., X. Tan, B. T. Shu, and W. Y. Yeong. 2016. “Selective Laser Melting of Stainless Steel 316L with Low Porosity and High Build Rates.” Materials & Design 104: 197–204. doi: 10.1016/j.matdes.2016.05.035
  • Tan, C., K. Zhou, M. Kuang, W. Ma, and T. Kuang. 2018. “Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions.” Science and Technology of Advanced Materials 19 (1): 746–758. doi: 10.1080/14686996.2018.1527645
  • Uriondo, A., M. Esperon-Miguez, and S. Perinpanayagam. 2014. “The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229 (11): 2132–2147. doi: 10.1177/0954410014568797
  • Van Beek, A. 2006. Advanced Engineering Design: Lifetime Performance and Reliability. Delft: Delft University of Technology Press.
  • Walker, K. F., Q. Liu, and M. Brandt. 2017. “Evaluation of Fatigue Crack Propagation Behaviour in Ti-6Al-4 V Manufactured by Selective Laser Melting.” International Journal of Fatigue 104: 302–308. doi: 10.1016/j.ijfatigue.2017.07.014
  • Wang, X., K. Kato, K. Adachi, and K. Aizawa. 2003. “Loads Carrying Capacity Map for the Surface Texture Design of SiC Thrust Bearing Sliding in Water.” Tribology International 36 (3): 189–197. doi: 10.1016/S0301-679X(02)00145-7
  • Wang, S., Y. Liu, W. Shi, B. Qi, J. Yang, F. Zhang, D. Han, and Y. Ma. 2017. “Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting.” Materials 10 (9): 1055. doi: 10.3390/ma10091055
  • Wegener, K., A. B. Spierings, and T. L. Starr. 2013. “Fatigue Performance of Additive Manufactured Metallic Parts.” Rapid Prototyping Journal 19 (2): 88–94. doi: 10.1108/13552541311302932
  • Yadollahi, A., and N. Shamsaei. 2017. “Additive Manufacturing of Fatigue Resistant Materials: Challenges and Opportunities.” International Journal of Fatigue 98: 14–31. doi: 10.1016/j.ijfatigue.2017.01.001
  • Yang, Y., Y. Zhu, M. M. Khonsari, and H. Yang. 2019. “Wear Anisotropy of Selective Laser Melted 316L Stainless Steel.” Wear 428–429: 376–386. doi: 10.1016/j.wear.2019.04.001
  • Yap, C. Y., C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing. 2015. “Review of Selective Laser Melting: Materials and Applications.” Applied Physics Reviews 2 (4): 041101. doi: 10.1063/1.4935926
  • Yin, S., C. Chen, X. Yan, X. Feng, R. Jenkins, P. O’Reilly, L. Min, L. Hua, and R. Lupoi. 2018. “The Influence of Aging Temperature and Aging Time on the Mechanical and Tribological Properties of Selective Laser Melted Maraging 18Ni-300 Steel.” Additive Manufacturing 22: 592–600. doi: 10.1016/j.addma.2018.06.005
  • Zhang, L. C., and H. Attar. 2016. “Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review.” Advanced Engineering Materials 18 (4): 463–475. doi: 10.1002/adem.201500419
  • Zhang, B., L. Dembinski, and C. Coddet. 2013. “The Study of the Laser Parameters and Environment Variables Effect on Mechanical Properties of High Compact Parts Elaborated by Selective Laser Melting 316L Powder.” Materials Science and Engineering: A 584 (6): 21–31. doi: 10.1016/j.msea.2013.06.055
  • Zhao, X., Q. Wei, B. Song, Y. Liu, X. Luo, S. Wen, and Y. Shi. 2015. “Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting.” Materials and Manufacturing Processes 30 (11): 1283–1289. doi: 10.1080/10426914.2015.1026351
  • Zhu, Y., X. Chen, J. Zou, and H. Yang. 2016. “Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions.” Wear 368–369: 485–495. doi: 10.1016/j.wear.2016.09.020
  • Zhu, Y., G. Lin, M. M. Khonsari, J. Zhang, and H. Yang. 2018. “Material Characterization and Lubricating Behaviors of Porous Stainless Steel Fabricated by Selective Laser Melting.” Journal of Materials Processing Technology 262: 41–52. doi: 10.1016/j.jmatprotec.2018.06.027
  • Zhu, Y., U. Olofsson, and A. Söderberg. 2013. “Adhesion Modeling in the Wheel–Rail Contact Under Dry and Lubricated Conditions Using Measured 3D Surfaces.” Tribology International 61: 1–10. doi: 10.1016/j.triboint.2012.11.022
  • Zhu, Y., T. Peng, G. Jia, H. Zhang, S. Xu, and H. Yang. 2019. “Electrical Energy Consumption and Mechanical Properties of Selective-Laser-Melting-Produced 316L Stainless Steel Samples Using Various Processing Parameters.” Journal of Cleaner Production 208: 77–85. doi: 10.1016/j.jclepro.2018.10.109
  • Zhu, Y., J. Zou, X. Chen, and H. Yang. 2016. “Tribology of Selective Laser Melting Processed Parts: Stainless Steel 316 L Under Lubricated Conditions.” Wear 350–351: 46–55. doi: 10.1016/j.wear.2016.01.004
  • Zhu, Y., J. Zou, and H. Yang. 2018. “Wear Performance of Metal Parts Fabricated by Selective Laser Melting: A Literature Review.” Journal of Zhejiang University-Science A 19 (2): 95–110. doi: 10.1631/jzus.A1700328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.