770
Views
19
CrossRef citations to date
0
Altmetric
Articles

Effect of defects and specimen size with rectangular cross-section on the tensile properties of additively manufactured components

ORCID Icon, , , &
Pages 251-264 | Received 11 Sep 2019, Accepted 09 Feb 2020, Published online: 04 Mar 2020

References

  • Ahmadi, A., R. Mirzaeifar, N. S. Moghaddam, A. S. Turabi, H. E. Karaca, and M. Elahinia. 2016. “Effect of Manufacturing Parameters on Mechanical Properties of 316L Stainless Steel Parts Fabricated by Selective Laser Melting: A Computational Framework.” Materials & Design 112: 328–338.
  • Al-Bermani, S. S., M. L. Blackmore, W. Zhang, and I. Todd. 2010. “The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V.” Metallurgical and Materials Transactions A 41 (13): 3422–3434.
  • Alcisto, J., A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, et al. 2011. “Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V.” Journal of Materials Engineering and Performance 20 (2): 203–212.
  • Arcam, A. B. n.d. Ti6Al4 V Titanium Alloy. http://www.arcam.com/wpcontent/uploads/Arcam-Ti6Al4V-Titanium-Alloy.pdf.
  • Bhattacharya, S., G. P. Dinda, A. K. Dasgupta, H. Natu, B. Dutta, and J. Mazumder. 2011. “Microstructural Evolution and Mechanical, and Corrosion Property Evaluation of Cu–30Ni Alloy Formed by Direct Metal Deposition Process.” Journal of Alloys and Compounds 509 (22): 6364–6373.
  • Cain, V., L. Thijs, J. Van Humbeeck, B. Van Hooreweder, and R. Knutsen. 2015. “Crack Propagation and Fracture Toughness of Ti6Al4 V Alloy Produced by Selective Laser Melting.” Additive Manufacturing 5: 68–76.
  • Carroll, B. E., T. A. Palmer, and A. M. Beese. 2015. “Anisotropic Tensile Behavior of Ti–6Al–4 V Components Fabricated with Directed Energy Deposition Additive Manufacturing.” Acta Materialia 87: 309–320.
  • Casati, R., J. Lemke, and M. Vedani. 2016. “Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting.” Journal of Materials Science & Technology 32 (8): 738–744.
  • Chandramohan, P., S. Bhero, F. Varachia, B. A. Obadele, and P. A. Olubambi. 2018. “Laser Additive Manufactured Ti–6Al–4 V Alloy: Heat Treatment Studies.” Transactions of the Indian Institute of Metals 71 (3): 579–587.
  • Chlebus, E., K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski. 2015. “Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting.” Materials Science and Engineering: A 639: 647–655.
  • Chlebus, E., B. Kuźnicka, T. Kurzynowski, and B. Dybała. 2011. “Microstructure and Mechanical Behaviour of Ti–6Al–7Nb Alloy Produced by Selective Laser Melting.” Materials Characterization 62 (5): 488–495.
  • Davis, J. R. 2004. Tensile Testing. Ohio: A S M International, Materials Park.
  • de Formanoir, C., S. Michotte, O. Rigo, L. Germain, and S. Godet. 2016. “Electron Beam Melted Ti–6Al–4V: Microstructure, Texture and Mechanical Behavior of the as-Built and Heat-Treated Material.” Materials Science and Engineering: A 652: 105–119.
  • DebRoy, T., H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang. 2018. “Additive Manufacturing of Metallic Components – Process, Structure and Properties.” Progress in Materials Science 92 (Supplement C): 112–224.
  • Deng, D., R. L. Peng, H. Brodin, and J. Moverare. 2018. “Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments.” Materials Science and Engineering: A 713: 294–306.
  • Dinda, G. P., L. Song, and J. Mazumder. 2008. “Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition.” Metallurgical and Materials Transactions A 39 (12): 2914–2922.
  • Edwards, P., A. O'Conner, and M. Ramulu. 2013. “Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance.” Journal of Manufacturing Science and Engineering 135 (6): 061016–061016.
  • Erhard, B., L. Christoph, and P. Frank. 2011. “Mechanical Properties of Additive Manufactured Ti-6Al-4V Using Wire and Powder Based Processes.” IOP Conference Series: Materials Science and Engineering 26 (1): 012004.
  • Galarraga, H., D. A. Lados, R. R. Dehoff, M. M. Kirka, and P. Nandwana. 2016. “Effects of the Microstructure and Porosity on Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM).” Additive Manufacturing 10: 47–57.
  • GE Reports. 2015. The FAA Cleared the First 3D Printed Part to Fly in a Commercial Jet Engine from GE, http://www.gereports.com/post/116402870270/the-faa-cleared-the-first-3d-printed-part-to-fly, 2015.
  • Gong, H., H. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, and B. Stucker. 2015. “Influence of Defects on Mechanical Properties of Ti-6Al-4V Components Produced by Selective Laser Melting and Electron Beam Melting.” Materials & Design 86: 545–554.
  • Greitemeier, D., C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz. 2016. “Effect of Surface Roughness on Fatigue Performance of Additive Manufactured Ti–6Al–4 V.” Materials Science and Technology 32 (7): 629–634.
  • Guan, K., Z. Wang, M. Gao, X. Li, and X. Zeng. 2013. “Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel.” Materials & Design 50: 581–586.
  • Hrabe, N., and T. Quinn. 2013a. “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4 V) Fabricated Using Electron Beam Melting (EBM).” Materials Science and Engineering: A 573: 271–277.
  • Hrabe, N., and T. Quinn. 2013b. “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4 V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance From Build Plate and Part Size.” Materials Science and Engineering: A 573: 264–270.
  • Hua, T., C. Jing, Z. Fengying, L. Xin, and H. Weidong. 2009. “Microstructure and Mechanical Properties of Laser Solid Formed Ti-6Al-4V From Blended Elemental Powders.” Rare Metal Materials and Engineering 38 (4): 574–578.
  • Kasperovich, G., and J. Hausmann. 2015. “Improvement of Fatigue Resistance and Ductility of TiAl6V4 Processed by Selective Laser Melting.” Journal of Materials Processing Technology 220: 202–214.
  • Keist, J. S., and T. A. Palmer. 2016. “Role of Geometry on Properties of Additively Manufactured Ti-6Al-4V Structures Fabricated Using Laser Based Directed Energy Deposition.” Materials & Design 106: 482–494.
  • Keist, J. S., and T. A. Palmer. 2017. “Development of Strength-Hardness Relationships in Additively Manufactured Titanium Alloys.” Materials Science and Engineering: A 693: 214–224.
  • Khoo, Z. X., J. An, C. K. Chua, Y. F. Shen, C. N. Kuo, and Y. Liu. 2018. “Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy.” Materials 12 (1): 77.
  • Koike, M., P. Greer, K. Owen, G. Lilly, L. E. Murr, S. M. Gaytan, E. Martinez, and T. Okabe. 2011b. “Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting.” Materials 4 (10): 1776–1792.
  • Koike, M., K. Martinez, L. Guo, G. Chahine, R. Kovacevic, and T. Okabe. 2011a. “Evaluation of Titanium Alloy Fabricated Using Electron Beam Melting System for Dental Applications.” Journal of Materials Processing Technology 211 (8): 1400–1408.
  • Kok, Y., X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, and S. B. Tor. 2018. “Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review.” Materials & Design 139: 565–586.
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2019. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129.
  • Ladani, L., J. Razmi, and S. Farhan Choudhury. 2014. “Mechanical Anisotropy and Strain Rate Dependency Behavior of Ti6Al4 V Produced Using E-Beam Additive Fabrication.” Journal of Engineering Materials and Technology 136 (3): 031006–031006-7.
  • Lee, J.-Y., J. An, and C. K. Chua. 2017. “Fundamentals and Applications of 3D Printing for Novel Materials.” Applied Materials Today 7: 120–133.
  • Lee, J.-Y., W. S. Tan, J. An, C. K. Chua, C. Y. Tang, A. G. Fane, and T. H. Chong. 2016. “The Potential to Enhance Membrane Module Design with 3D Printing Technology.” Journal of Membrane Science 499: 480–490.
  • Leuders, S., M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier. 2013. “On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance.” International Journal of Fatigue 48: 300–307.
  • Liverani, E., S. Toschi, L. Ceschini, and A. Fortunato. 2017. “Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel.” Journal of Materials Processing Technology 249: 255–263.
  • Lu, S. L., H. P. Tang, Y. P. Ning, N. Liu, D. H. StJohn, and M. Qian. 2015. “Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing.” Metallurgical and Materials Transactions A 46: 3824–3834.
  • Ma, M., Z. Wang, D. Wang, and X. Zeng. 2013. “Control of Shape and Performance for Direct Laser Fabrication of Precision Large-Scale Metal Parts with 316L Stainless Steel.” Optics & Laser Technology 45: 209–216.
  • Ma, M., Z. Wang, and X. Zeng. 2017. “A Comparison on Metallurgical Behaviors of 316L Stainless Steel by Selective Laser Melting and Laser Cladding Deposition.” Materials Science and Engineering: A 685: 265–273.
  • Mertens, A., S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers. 2014. “Mechanical Properties of Alloy Ti–6Al–4 V and of Stainless Steel 316L Processed by Selective Laser Melting: Influence of out-of-Equilibrium Microstructures.” Powder Metallurgy 57 (3): 184–189.
  • Molinari, A., L. Facchini, P. Robotti, and E. Magalini. 2009. “Microstructure and Mechanical Properties of Ti-6Al-4 V Produced by Electron Beam Melting of pre-Alloyed Powders.” Rapid Prototyping Journal 15 (3): 171–178.
  • Mower, T. M., and M. J. Long. 2016. “Mechanical Behavior of Additive Manufactured, Powder-bed Laser-Fused Materials.” Materials Science and Engineering: A 651: 198–213.
  • Murr, L. E., E. V. Esquivel, S. A. Quinones, S. M. Gaytan, M. I. Lopez, E. Y. Martinez, F. Medina, et al. 2009. “Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti–6Al–4 V Biomedical Prototypes Compared to Wrought Ti–6Al–4 V.” Materials Characterization 60 (2): 96–105.
  • Ng, W. L., C. K. Chua, and Y.-F. Shen. 2019. “Print Me An Organ! Why We Are Not There Yet.” Progress in Polymer Science 97: 101145.
  • Palanivel, S., A. K. Dutt, E. J. Faierson, and R. S. Mishra. 2016. “Spatially Dependent Properties in a Laser Additive Manufactured Ti–6Al–4 V Component.” Materials Science and Engineering: A 654: 39–52.
  • Pham, M. T., T. J. Teo, S. H. Yeo, P. Wang, and M. L. S. Nai. 2017. “A 3-D Printed Ti-6Al-4V 3-DOF Compliant Parallel Mechanism for High Precision Manipulation.” IEEE/ASME Transactions on Mechatronics 22 (5): 2359–2368.
  • Pirozzi, C., S. Franchitti, R. Borrelli, F. Caiazzo, V. Alfieri, and P. Argenio. 2017. “Study on the Factors Affecting the Mechanical Behavior of Electron Beam Melted Ti6Al4 V.” Journal of Materials Engineering and Performance 26 (9): 4491–4499.
  • Popovich, V. A., E. V. Borisov, A. A. Popovich, V. S. Sufiiarov, D. V. Masaylo, and L. Alzina. 2017. “Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties.” Materials & Design 114: 441–449.
  • Prashanth, K. G., S. Scudino, H. J. Klauss, K. B. Surreddi, L. Löber, Z. Wang, A. K. Chaubey, U. Kühn, and J. Eckert. 2014. “Microstructure and Mechanical Properties of Al–12Si Produced by Selective Laser Melting: Effect of Heat Treatment.” Materials Science and Engineering: A 590: 153–160.
  • Qiu, C., N. J. E. Adkins, and M. M. Attallah. 2013. “Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti–6Al–4 V.” Materials Science and Engineering: A 578: 230–239.
  • Rafi, H. K., N. V. Karthik, H. Gong, T. L. Starr, and B. E. Stucker. 2013. “Microstructures and Mechanical Properties of Ti6Al4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting.” Journal of Materials Engineering and Performance 22 (12): 3872–3883.
  • Scharowsky, T., V. Juechter, F. Singer Robert, and C. Körner. 2015. “Influence of the Scanning Strategy on the Microstructure and Mechanical Properties in Selective Electron Beam Melting of Ti–6Al–4 V.” Advanced Engineering Materials 17 (11): 1573–1578.
  • Seifi, M., A. Salem, D. Satko, J. Shaffer, and J. J. Lewandowski. 2017. “Defect Distribution and Microstructure Heterogeneity Effects on Fracture Resistance and Fatigue Behavior of EBM Ti–6Al–4 V.” International Journal of Fatigue 94 (Part 2): 263–287.
  • Simonelli, M., Y. Y. Tse, and C. Tuck. 2014. “Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4 V.” Materials Science and Engineering: A 616: 1–11.
  • Sterling, A., N. Shamsaei, B. Torries, and S. M. Thompson. 2015. “Fatigue Behaviour of Additively Manufactured Ti-6Al-4V.” Procedia Engineering 133: 576–589.
  • Strondl, A., M. Palm, J. Gnauk, and G. Frommeyer. 2011. “Microstructure and Mechanical Properties of Nickel Based Superalloy IN718 Produced by Rapid Prototyping with Electron Beam Melting (EBM).” Materials Science and Technology 27 (5): 876–883.
  • Sui, S., C. Zhong, J. Chen, A. Gasser, W. Huang, and J. H. Schleifenbaum. 2018. “Influence of Solution Heat Treatment on Microstructure and Tensile Properties of Inconel 718 Formed by High-Deposition-Rate Laser Metal Deposition.” Journal of Alloys and Compounds 740: 389–399.
  • Sun, S.-H., Y. Koizumi, S. Kurosu, Y.-P. Li, and A. Chiba. 2015. “Phase and Grain Size Inhomogeneity and Their Influences on Creep Behavior of Co–Cr–Mo Alloy Additive Manufactured by Electron Beam Melting.” Acta Materialia 86 (0): 305–318.
  • Sun, S.-H., Y. Koizumi, S. Kurosu, Y.-P. Li, H. Matsumoto, and A. Chiba. 2014. “Build Direction Dependence of Microstructure and High-Temperature Tensile Property of Co–Cr–Mo Alloy Fabricated by Electron Beam Melting.” Acta Materialia 64: 154–168.
  • Sun, Z., X. Tan, S. B. Tor, and C. K. Chua. 2018. “Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting.” NPG Asia Materials 10 (4): 127–136.
  • Sun, Y. Y., P. Wang, S. L. Lu, L. Q. Li, M. L. S. Nai, and J. Wei. 2019. “Laser Welding of Electron Beam Melted Ti-6Al-4V to Wrought Ti-6Al-4V: Effect of Welding Angle on Microstructure and Mechanical Properties.” Journal of Alloys and Compounds 782: 967–972.
  • Suryawanshi, J., K. G. Prashanth, and U. Ramamurty. 2017. “Mechanical Behavior of Selective Laser Melted 316L Stainless Steel.” Materials Science and Engineering: A 696: 113–121.
  • Takaichi, A., T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, et al. 2013. “Microstructures and Mechanical Properties of Co–29Cr–6Mo Alloy Fabricated by Selective Laser Melting Process for Dental Applications.” Journal of the Mechanical Behavior of Biomedical Materials 21: 67–76.
  • Tammas-Williams, S., P. J. Withers, I. Todd, and P. B. Prangnell. 2016. “The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting.” Metallurgical and Materials Transactions A 47 (5): 1939–1946.
  • Tan, X., Y. Kok, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong, and C. K. Chua. 2015. “Graded Microstructure and Mechanical Properties of Additive Manufactured Ti–6Al–4 V via Electron Beam Melting.” Acta Materialia 97: 1–16.
  • Tang, H. P., M. Qian, N. Liu, X. Z. Zhang, G. Y. Yang, and J. Wang. 2015. “Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting.” JOM Journal of the Minerals Metals and Materials Society 67 (3): 555–563.
  • Tang, H. P., Q. B. Wang, G. Y. Yang, J. Gu, N. Liu, L. Jia, and M. Qian. 2016. “A Honeycomb-Structured Ti-6Al-4V Oil–Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-Engine Applications.” JOM Journal of the Minerals Metals and Materials Society 68 (3): 799–805.
  • Tolosa, I., F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola. 2010. “Study of Mechanical Properties of AISI 316 Stainless Steel Processed by “Selective Laser Melting”, Following Different Manufacturing Strategies.” The International Journal of Advanced Manufacturing Technology 51 (5): 639–647.
  • Trosch, T., J. Strößner, R. Völkl, and U. Glatzel. 2016. “Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting.” Materials Letters 164: 428–431.
  • Vilaro, T., C. Colin, and J. D. Bartout. 2011. “As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting.” Metallurgical and Materials Transactions A 42 (10): 3190–3199.
  • Voisin, T., N. P. Calta, S. A. Khairallah, J.-B. Forien, L. Balogh, R. W. Cunningham, A. D. Rollett, and Y. M. Wang. 2018. “Defects-dictated Tensile Properties of Selective Laser Melted Ti-6Al-4V.” Materials & Design 158: 113–126.
  • Vrancken, B., L. Thijs, J.-P. Kruth, and J. Van Humbeeck. 2012. “Heat Treatment of Ti6Al4 V Produced by Selective Laser Melting: Microstructure and Mechanical Properties.” Journal of Alloys and Compounds 541: 177–185.
  • Wang, F. 2012. “Mechanical Property Study on Rapid Additive Layer Manufacture Hastelloy® X Alloy by Selective Laser Melting Technology.” The International Journal of Advanced Manufacturing Technology 58 (5): 545–551.
  • Wang, X., and K. Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257: 65–78.
  • Wang, Z., K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng. 2012. “The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting.” Journal of Alloys and Compounds 513: 518–523.
  • Wang, P., P. Huang, F. L. Ng, W. J. Sin, S. Lu, M. L. S. Nai, Z. Dong, and J. Wei. 2019a. “Additively Manufactured CoCrFeNiMn High-Entropy Alloy via pre-Alloyed Powder.” Materials & Design 168: 107576.
  • Wang, P., M. L. S. Nai, S. Lu, J. Bai, B. Zhang, and J. Wei. 2017a. “Study of Direct Fabrication of a Ti-6Al-4V Impeller on a Wrought Ti-6Al-4V Plate by Electron Beam Melting.” JOM Journal of the Minerals Metals and Materials Society 69 (12): 2738–2744.
  • Wang, P., M. L. S. Nai, W. J. Sin, S. Lu, B. Zhang, J. Bai, J. Song, and J. Wei. 2018b. “Realizing a Full Volume Component by in-Situ Welding During Electron Beam Melting Process.” Additive Manufacturing 22: 375–380.
  • Wang, P., M. L. S. Nai, W. J. Sin, S. Lu, B. Zhang, J. Bai, J. Song, and J. Wei. 2019b. “Effect of Overlap Distance on the Microstructure and Mechanical Properties of in Situ Welded Parts Built by Electron Beam Melting Process.” Journal of Alloys and Compounds 772: 247–255.
  • Wang, P., M. L. S. Nai, W. J. Sin, and J. Wei. 2015. “Effect of Building Height on Microstructure and Mechanical Properties of Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting.” MATEC Web of Conferences 30: 02001.
  • Wang, P., M. L. S. Nai, X. Tan, W. J. Sin, S. B. Tor, and J. Wei. 2016b. Anisotropic Mechanical Properties in a Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting. TMS 2016 145th Annual Meeting & Exhibition: Supplemental Proceedings, Springer International Publishing, Cham, 2016, pp. 5-12.
  • Wang, P., M. L. S. Nai, X. Tan, G. Vastola, R. Srinivasan, W. J. Sin, S. B. Tor, Q. X. Pei, and J. Wei. 2016c. Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting, 2016 Annual International Solid Freeform Fabrication Symposium (SFF Symp 2016), Austin, Texas, USA, 2016, pp. 691-704.
  • Wang, Z., T. A. Palmer, and A. M. Beese. 2016d. “Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing.” Acta Materialia 110: 226–235.
  • Wang, Y., Y. Shen, Z. Wang, J. Yang, N. Liu, and W. Huang. 2010. “Development of Highly Porous Titanium Scaffolds by Selective Laser Melting.” Materials Letters 6 (64): 674–676.
  • Wang, P., W. Sin, M. Nai, and J. Wei. 2017b. “Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.” Materials 10 (10): 1121.
  • Wang, P., J. Song, M. Ling Sharon Nai, and J. Wei. 2020. “Experimental Analysis of Additively Manufactured Component and Design Guidelines for Lightweight Structures: a Case Study Using Electron Beam Melting.” Additive Manufacturing 33: 101088.
  • Wang, P., X. Tan, C. He, M. L. S. Nai, R. Huang, S. B. Tor, and J. Wei. 2018a. “Scanning Optical Microscopy for Porosity Quantification of Additively Manufactured Components.” Additive Manufacturing 21: 350–358.
  • Wang, P., X. Tan, M. L. S. Nai, S. B. Tor, and J. Wei. 2016a. “Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for an Electron Beam Melted Ti–6Al–4 V Component.” Materials & Design 95: 287–295.
  • Wang, F., S. Williams, P. Colegrove, and A. A. Antonysamy. 2013. “Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V.” Metallurgical and Materials Transactions A 44 (2): 968–977.
  • Wauthle, R., B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.-P. Kruth, and J. Van Humbeeck. 2015. “Effects of Build Orientation and Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4 V Lattice Structures.” Additive Manufacturing 5: 77–84.
  • Yadollahi, A., N. Shamsaei, S. M. Thompson, and D. W. Seely. 2015. “Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel.” Materials Science and Engineering: A 644: 171–183.
  • Yang, J., J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng. 2016. “Role of Molten Pool Mode on Formability, Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy.” Materials & Design 110: 558–570.
  • Yap, C. Y., C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing. 2015. “Review of Selective Laser Melting: Materials and Applications.” Applied Physics Reviews 2 (4): 041101.
  • Yu, H., F. Li, J. Yang, J. Shao, Z. Wang, and X. Zeng. 2018. “Investigation on Laser Welding of Selective Laser Melted Ti-6Al-4V Parts: Weldability, Microstructure and Mechanical Properties.” Materials Science and Engineering: A 712: 20–27.
  • Yu, J., M. Rombouts, G. Maes, and F. Motmans. 2012. “Material Properties of Ti6Al4 V Parts Produced by Laser Metal Deposition.” Physics Procedia 39: 416–424.
  • Yu, W. H., S. L. Sing, C. K. Chua, C. N. Kuo, and X. L. Tian. 2019. “Particle-reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the art Review.” Progress in Materials Science 104: 330–379.
  • Yuan, S., C. K. Chua, and K. Zhou. 2019. “3D-Printed Mechanical Metamaterials with High Energy Absorption.” Advanced Materials Technologies 4 (3): 1800419.
  • Zhai, Y., H. Galarraga, and D. A. Lados. 2016. “Microstructure, Static Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Fabricated by Additive Manufacturing: LENS and EBM.” Engineering Failure Analysis 69: 3–14.
  • Zhang, L. C., D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe. 2011. “Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti–24Nb–4Zr–8Sn Alloy.” Scripta Materialia 65 (1): 21–24.
  • Zhang, K., S. Wang, W. Liu, and X. Shang. 2014. “Characterization of Stainless Steel Parts by Laser Metal Deposition Shaping.” Materials & Design 55: 104–119.
  • Zhao, X., S. Li, M. Zhang, Y. Liu, T. B. Sercombe, S. Wang, Y. Hao, R. Yang, and L. E. Murr. 2016. “Comparison of the Microstructures and Mechanical Properties of Ti–6Al–4 V Fabricated by Selective Laser Melting and Electron Beam Melting.” Materials & Design 95: 21–31.
  • Zhong, C., A. Gasser, J. Kittel, J. Fu, Y. Ding, and R. Poprawe. 2016. “Microstructures and Tensile Properties of Inconel 718 Formed by High Deposition-Rate Laser Metal Deposition.” Journal of Laser Applications 28 (2): 022010.
  • Zhong, Y., L.-E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, and Z. Shen. 2017. “Additive Manufacturing of 316L Stainless Steel by Electron Beam Melting for Nuclear Fusion Applications.” Journal of Nuclear Materials 486: 234–245.
  • Zhu, L., Z. Xu, and Y. Gu. 2018. “Effect of Laser Power on the Microstructure and Mechanical Properties of Heat Treated Inconel 718 Superalloy by Laser Solid Forming.” Journal of Alloys and Compounds 746: 159–167.
  • Zhuang, P., A. X. Sun, J. An, C. K. Chua, and S. Y. Chew. 2018. “3D Neural Tissue Models: From Spheroids to Bioprinting.” Biomaterials 154: 113–133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.