2,220
Views
6
CrossRef citations to date
0
Altmetric
Articles

Material modelling and property mapping for structural FEA of thin-walled additively manufactured components

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 97-112 | Received 25 May 2020, Accepted 14 Sep 2020, Published online: 24 Sep 2020

References

  • Ajoku, U., N. Saleh, N. Hopkinson, R. Hague, and P. Erasenthiran. 2016. “Investigating Mechanical Anisotropy and End-of-Vector Effect in Laser-Sintered Nylon Parts.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220 (7): 1077–1086. doi: 10.1243/09544054JEM537
  • Algardh, J. K., T. Horn, H. West, R. Aman, A. Snis, H. Engqvist, J. Lausmaa, and O. Harrysson. 2016. “Thickness Dependency of Mechanical Properties for Thin-Walled Titanium Parts Manufactured by Electron Beam Melting (EBM).” Additive Manufacturing 12: 45–50. doi: 10.1016/j.addma.2016.06.009
  • Amado-Becker, A., J. Ramos-Grez, M. J. Yañez, Y. Vargas, and L. Gaete. 2008. “Elastic Tensor Stiffness Coefficients for SLS Nylon 12 Under Different Degrees of Densification as Measured by Ultrasonic Technique.” Rapid Prototyping Journal 14 (5): 260–270. doi: 10.1108/13552540810907929
  • Bain, E. D., E. J. Garboczi, J. E. Seppala, T. C. Parker, and K. B. Migler. 2019. “AMB2018-04: Benchmark Physical Property Measurements for Powder Bed Fusion Additive Manufacturing of Polyamide 12.” Integrating Materials and Manufacturing Innovation 8 (3): 335–361. doi: 10.1007/s40192-019-00146-3
  • Barba, D., C. Alabort, Y. T. Tang, M. J. Viscasillas, R. C. Reed, and E. Alabort. 2020. “On the Size and Orientation Effect in Additive Manufactured Ti–6Al–4V.” Materials & Design 186: 108235. doi: 10.1016/j.matdes.2019.108235
  • Barbero, E. J.. 2017. Introduction to Composite Materials Design. 3rd ed. Boca Raton: CRC Press.
  • Bell, D., and T. Siegmund. 2018. “3D-Printed Polymers Exhibit a Strength Size Effect.” Additive Manufacturing 21: 658–665. doi: 10.1016/j.addma.2018.04.013
  • Brown, B., W. Everhart, and J. Dinardo. 2016. “Characterization of Bulk to Thin Wall Mechanical Response Transition in Powder Bed AM.” Rapid Prototyping Journal 22 (5): 801–809. doi: 10.1108/RPJ-10-2015-0146
  • Caulfield, B., P. E. McHugh, and S. Lohfeld. 2007. “Dependence of Mechanical Properties of Polyamide Components on Build Parameters in The SLS Process.” Journal of Materials Processing Technology182 (1-3): 477–488. doi: 10.1016/j.jmatprotec.2006.09.007
  • Cooke, W., R. A. Tomlinson, R. Burguete, D. Johns, and G. Vanard. 2011. “Anisotropy, Homogeneity and Ageing in an SLS Polymer.” Rapid Prototyping Journal 17 (4): 269–279. doi: 10.1108/13552541111138397
  • Dapogny, C., R. Estevez, A. Faure, and G. Michailidis. 2019. “Shape and Topology Optimization Considering Anisotropic Features Induced by Additive Manufacturing Processes.” Computer Methods in Applied Mechanics and Engineering 344: 626–665. doi: 10.1016/j.cma.2018.09.036
  • Dewulf, W., M. Pavan, T. Craeghs, and J. P. Kruth. 2016. “Using X-ray Computed Tomography to Improve The Porosity Level of Polyamide-12 Laser Sintered Parts.” Cirp Annals 65 (1): 205–208. doi: 10.1016/j.cirp.2016.04.056
  • Domingo-Espin, M., J. M. Puigoriol-Forcada, A. A. Garcia-Granada, J. Llumà, S. Borros, and G. Reyes. 2015. “Mechanical Property Characterization and Simulation of Fused Deposition Modeling Polycarbonate Parts.” Materials & Design 83: 670–677. doi: 10.1016/j.matdes.2015.06.074
  • Dupin, S., O. Lame, C. Barrès, and J. Y. Charmeau. 2012. “Microstructural Origin of Physical and Mechanical Properties of Polyamide 12 Processed by Laser Sintering.” European Polymer Journal 48 (9): 1611–1621. doi: 10.1016/j.eurpolymj.2012.06.007
  • Faes, M., Y. Wang, P. Lava, and D. Moens. 2017. “Variability, Heterogeneity, and Anisotropy in the Quasi-Static Response of Laser Sintered Pa12 Components.” Strain 53 (2): e12219. doi: 10.1111/str.12219
  • Goodridge, R. D., C. J. Tuck, and R. Hague. 2012. “Laser Sintering of Polyamides and Other Polymers.” Progress in Materials Science 57 (2): 229–267. doi: 10.1016/j.pmatsci.2011.04.001
  • Huber, M.. 1923. “The Theory of Crosswise Reinforced Ferroconcrete Slabs and Its Application to Various Important Constructional Problems Involving Rectangular Slabs.” Der Bauingenieur 4 (12): 354–360.
  • ISO 1133. 2012. “Plastics – Determination of The Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics.”
  • ISO 527. 2012. “Plastics – determination of tensile properties.”
  • Raja, K. B., R. J. P. Raja, K. Karan, R. Soundararajan, and P. Ashokavarthanan. 2019. Parameter Optimization for Polyamide in Selective Laser Sintering Based on Mechanical Behavior. 217–231.Singapore: Springer Singapore.
  • Lammens, N., M. Kersemans, I. De Baere, and W. Van Paepegem. 2017. “On the Visco-Elasto-Plastic Response of Additively Manufactured Polyamide-12 (PA-12) Through Selective Laser Sintering.” Polymer Testing 57: 149–155. doi: 10.1016/j.polymertesting.2016.11.032
  • Lindberg, A., J. Alfthan, H. Pettersson, G. Flodberg, and L. Yang. 2018. “Mechanical Performance of Polymer Powder Bed Fused Objects–FEM Simulation and Verification.” Additive Manufacturing 24: 577–586. doi: 10.1016/j.addma.2018.10.009
  • Lindgren, L. E., A. Lundbäck, M. Fisk, R. Pederson, and J. Andersson. 2016. “Simulation of Additive Manufacturing Using Coupled Constitutive and Microstructure Models.” Additive Manufacturing 12: 144–158. Special Issue on Modeling & Simulation for Additive Manufacturing. doi: 10.1016/j.addma.2016.05.005
  • Majewski, C., and N. Hopkinson. 2011. “Effect of Section Thickness and Build Orientation on Tensile Properties and Material Characteristics of Laser Sintered Nylon–12 Parts.” Rapid Prototyping Journal17 (3): 176–180. doi: 10.1108/13552541111124743
  • Marschall, D., H. Rippl, F. Ehrhart, and M. Schagerl. 2020. “Boundary Conformal Design of Laser Sintered Sandwich Cores and Simulation of Graded Lattice Cells Using a Forward Homogenization Approach.” Materials & Design 190: 108539. doi: 10.1016/j.matdes.2020.108539
  • Ning, J., M. Praniewicz, W. Wang, J. R. Dobbs, and S. Y. Liang. 2020a. “Analytical Modeling of Part Distortion in Metal Additive Manufacturing.” The International Journal of Advanced Manufacturing Technology 107 (1-2): 49–57. doi: 10.1007/s00170-020-05065-8
  • Ning, J., D. E. Sievers, H. Garmestani, and S. Y. Liang. 2019. “Analytical Modeling of In-Process Temperature in Powder Bed Additive Manufacturing Considering Laser Power Absorption, Latent Heat, Scanning Strategy, and Powder Packing.” Materials (Basel, Switzerland) 12 (5): 808. doi: 10.3390/ma12050808
  • Ning, J., D. E. Sievers, H. Garmestani, and S. Y. Liang. 2020b. “Analytical Modeling of In-Situ Deformation of Part and Substrate in Laser Cladding Additive Manufacturing of Inconel 625.” Journal of Manufacturing Processes 49: 135–140. doi: 10.1016/j.jmapro.2019.11.013
  • Pham, M. T., S. H. Yeo, T. J. Teo, P. Wang, and M. L. S. Nai. 2019. “Design and Optimization of a Three Degrees-of-Freedom Spatial Motion Compliant Parallel Mechanism with Fully Decoupled Motion Characteristics.” Journal of Mechanisms and Robotics 11 (5). doi: 10.1115/1.4043925
  • Roach, A. M., B. C. White, A. Garland, B. H. Jared, J. D. Carroll, and B. L. Boyce. 2020. “Size-Dependent Stochastic Tensile Properties in Additively Manufactured 316L Stainless Steel.” Additive Manufacturing32: 101090. doi: 10.1016/j.addma.2020.101090
  • Rüsenberg, S., S. Josupeit, and H. J. Schmid. 2014. “A Method to Characterize the Quality of a Polymer Laser Sintering Process.” Advances in Mechanical Engineering 6: 185374. doi: 10.1155/2014/185374
  • Schürmann, H.. 2007. Konstruieren Mit Faser-Kunststoff-Verbunden. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Sindinger, S. L., C. Kralovec, D. Tasch, and M. Schagerl. 2020. “Thickness Dependent Anisotropy of Mechanical Properties and Inhomogeneous Porosity Characteristics in Laser-Sintered Polyamide 12 Specimens.” Additive Manufacturing 33: 101141. doi: 10.1016/j.addma.2020.101141
  • Stichel, T., T. Frick, T. Laumer, F. Tenner, T. Hausotte, M. Merklein, and M. Schmidt. 2017. “A Round Robin Study for Selective Laser Sintering of Polyamide 12: Microstructural Origin of the Mechanical Properties.” Optics & Laser Technology 89: 31–40. doi: 10.1016/j.optlastec.2016.09.042
  • Stichel, T., T. Frick, T. Laumer, F. Tenner, T. Hausotte, M. Merklein, and M. Schmidt. 2018. “A Round Robin Study for Selective Laser Sintering of Polymers: Back Tracing of the Pore Morphology to the Process Parameters.” Journal of Materials Processing Technology 252: 537–545. doi: 10.1016/j.jmatprotec.2017.10.013
  • Tasch, D., A. Mad, R. Stadlbauer, and M. Schagerl. 2018. “Thickness Dependency of Mechanical Properties of Laser-Sintered Polyamide Lightweight Structures.” Additive Manufacturing 23: 25–33. doi: 10.1016/j.addma.2018.06.018
  • VDI 3405. 2019. “Additive Manufacturing Processes – Laser Sintering of Polymer Parts – Quality Control.”
  • Wang, P., M. H. Goh, Q. Li, M. L. S. Nai, and J. Wei. 2020a. “Effect of Defects and Specimen Size with Rectangular Cross-Section on The Tensile Properties of Additively Manufactured Components.” Virtual and Physical Prototyping 112 (13): 1–14. doi: 10.1080/17452759.2020.1823116
  • Wang, P., P. Huang, F. L. Ng, W. J. Sin, S. Lu, M. L. S. Nai, Z. Dong, and J. Wei. 2019a. “Additively Manufactured CoCrFeNiMn High-Entropy Alloy Via Pre-Alloyed Powder.” Materials & Design 168: 107576.
  • Wang, P., X. Li, S. Luo, M. L. S. Nai, J. Ding, and J. Wei. 2021. “Additively Manufactured Heterogeneously Porous Metallic Bone with Biostructural Functions and Bone-Like Mechanical Properties.” Journal of Materials Science & Technology 62: 173–179. doi: 10.1016/j.jmst.2020.05.056
  • Wang, P., M. L. S. Nai, W. J. Sin, S. Lu, B. Zhang, J. Bai, J. Song, and J. Wei. 2019b. “Effect of Overlap Distance on the Microstructure and Mechanical Properties of In Situ Welded Parts Built by Electron Beam Melting Process.” Journal of Alloys and Compounds 772: 247–255. doi: 10.1016/j.jallcom.2018.09.093
  • Wang, P., J. Song, M. L. S. Nai, and J. Wei. 2020b. “Experimental Analysis of Additively Manufactured Component and Design Guidelines for Lightweight Structures: A Case Study Using Electron Beam Melting.” Additive Manufacturing 33: 101088.
  • Wang, P., X. Tan, M. L. S. Nai, S. B. Tor, and J. Wei. 2016. “Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for An Electron Beam Melted Ti–6Al–4V Component.” Materials & Design 95: 287–295. doi: 10.1016/j.matdes.2016.01.093
  • Wegner, A., C. Mielicki, T. Grimm, B. Gronhoff, G. Witt, and J. Wortberg. 2014. “Determination of Robust Material Qualities and Processing Conditions for Laser Sintering of Polyamide 12.” Polymer Engineering & Science 54 (7): 1540–1554. doi: 10.1002/pen.23696
  • Wegner, A., and G. Witt. 2012. “Correlation of Process Parameters and Part Properties in Laser Sintering Using Response Surface Modeling.” Physics Procedia 39: 480–490. Laser Assisted Net shape Engineering 7 (LANE 2012). doi: 10.1016/j.phpro.2012.10.064
  • Wörz, A., and D. Drummer. 2018. “Understanding Hatch-Dependent Part Properties in SLS. In Proceeding of the Solid Freeform Fabrication Symposium. 1360–1369.
  • Zhang, P., J. Liu, and A. C. To. 2017. “Role of Anisotropic Properties on Topology Optimization of Additive Manufactured Load Bearing Structures.” Scripta Materialia 135: 148–152. doi: 10.1016/j.scriptamat.2016.10.021
  • Zhao, Y., Y. Chen, and Y. Zhou. 2019. “Novel Mechanical Models of Tensile Strength and Elastic Property of FDM AM PLA Materials: Experimental and Theoretical Analyses.” Materials & Design 181: 108089. doi: 10.1016/j.matdes.2019.108089
  • Zou, R., Y. Xia, S. Liu, P. Hu, W. Hou, Q. Hu, and C. Shan. 2016. “Isotropic and Anisotropic Elasticity and Yielding of 3D Printed Material.” Composites Part B: Engineering 99: 506–513. doi: 10.1016/j.compositesb.2016.06.009