3,242
Views
69
CrossRef citations to date
0
Altmetric
Articles

A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components

, &
Pages 68-96 | Received 29 Jul 2020, Accepted 27 Sep 2020, Published online: 12 Oct 2020

References

  • AlMangour, B., and J.-M. Yang. 2016. “Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing.” Materials & Design 110 (Suppl. C): 914–924.
  • Anselme, K., P. Linez, M. Bigerelle, D. Le Maguer, A. Le Maguer, P. Hardouin, H. F. Hildebrand, A. Iost, and J. M. Leroy. 2000. “The Relative Influence of the Topography and Chemistry of TiAl6V4 Surfaces on Osteoblastic Cell Behaviour.” Biomaterials 21 (15): 1567–1577.
  • Arcam Electron beam. [online]. http://www.arcam.com/technology/products/arcam-q10/.
  • ASTM International. 2013. F2971-13 Standard Practice for Reporting Data for Test Specimens Prepared by Additive Manufacturing. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F2971-13.
  • ASTM International. 2014a. F3122-14 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes. West Conshohocken, PA; ASTM International, https://doi.org/10.1520/F3122-14.
  • ASTM International. 2014b. F2924-14 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F2924-14.
  • ASTM International. 2014c. F3001-14 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) with Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3001-14.
  • ASTM International. 2014d. F3055-14a Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3055-14A.
  • ASTM International. 2014e. F3056-14e1 Standard Specification for Additive Manufacturing Nickel Alloy (UNS N06625) with Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3056-14E01.
  • ASTM International. 2015. ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing – General Principles – Terminology. West Conshohocken, PA: ASTM International. https://doi.org/10.1520/ISOASTM52900-15.
  • ASTM International. 2016a. ISO/ASTM52915-16 Standard Specification for Additive Manufacturing File Format (AMF) Version 1.2. West Conshohocken, PA; ASTM International, 2016. https://doi.org/10.1520/ISOASTM52915-16.
  • ASTM International. 2016b. F3184-16 Standard Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3184-16.
  • ASTM International. 2017. F3213-17 Standard for Additive Manufacturing – Finished Part Properties – Standard Specification for Cobalt-28 Chromium-6 Molybdenum via Powder Bed Fusion. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3213-17.
  • ASTM International. 2018a. ISO/ASTM52910-18 Additive Manufacturing — Design — Requirements, Guidelines and Recommendations. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3154-18.
  • ASTM International. 2018b. F3318-18 Standard for Additive Manufacturing – Finished Part Properties – Specification for AlSi10Mg with Powder Bed Fusion – Laser Beam. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3318-18.
  • ASTM International. 2019. ISO/ASTM52907-19 Additive Manufacturing — Feedstock Materials — Methods to Characterize Metallic Powders. West Conshohocken, PA; ASTM International. https://doi.org/10.1520/F3382-19.
  • Atzeni, E., M. Barletta, F. Calignano, L. Iuliano, G. Rubino, and V. Tagliaferri. 2016. “Abrasive Fluidized Bed (AFB) Finishing of AlSi10Mg Substrates Manufactured by Direct Metal Laser Sintering (DMLS).” Additive Manufacturing 10: 15–23.
  • Bagehorn, S., J. Wehr, and H. J. Maier. 2017. “Application of Mechanical Surface Finishing Processes for Roughness Reduction and Fatigue Improvement of Additively Manufactured Ti-6Al-4V Parts.” International Journal of Fatigue 102: 135–142.
  • Baicheng, Z., L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun, and W. Jun. 2017. “Study of Selective Laser Melting (SLM) Inconel 718 Part Surface Improvement by Electrochemical Polishing.” Materials & Design 116: 531–537.
  • Barletta, M. 2006. “A new Technology in Surface Finishing: Fluidized Bed Machining (FBM) of Aluminium Alloys.” Journal of Materials Processing Technology 173 (2): 157–165.
  • Barletta, M. 2009. “Progress in Abrasive Fluidized Bed Machining.” Journal of Materials Processing Technology 209 (20): 6087–6102.
  • Barletta, M., D. Ceccarelli, S. Guarino, and V. Tagliaferri. 2007b. “Fluidized Bed Assisted Abrasive Jet Machining (FB-AJM): Precision Internal Finishing of Inconel 718 Components.” Journal of Manufacturing Science and Engineering 129 (6): 1045–1059.
  • Barletta, M., S. Guarino, G. Rubino, and V. Tagliaferri. 2007a. “Progress in Fluidized Bed Assisted Abrasive Jet Machining (FB-AJM): Internal Polishing of Aluminium Tubes.” International Journal of Machine Tools and Manufacture 47 (3): 483–495.
  • Barletta, M., and V. Tagliaferri. 2006. “Development of an Abrasive Jet Machining System Assisted by Two Fluidized Beds for Internal Polishing of Circular Tubes.” International Journal of Machine Tools and Manufacture 46 (3): 271–283.
  • Bayoumi, M. R., and A. K. Abdellatif. 1995. “Effect of Surface Finish on Fatigue Strength.” Engineering Fracture Mechanics 51 (5): 861–870.
  • Beaucamp, A., Y. Namba, P. Charlton, and A. Graziano. 2014. “Shape Adaptive Grinding of Optical Surfaces for Scientific Applications and Consumer Products.” Frontiers in Optics, Optical Society of America, Tucson, Arizona.
  • Beaucamp, A. T., Y. Namba, P. Charlton, S. Jain, and A. A. Graziano. 2015. “Finishing of Additively Manufactured Titanium Alloy by Shape Adaptive Grinding (SAG).” Surface Topography: Metrology and Properties 3 (2): 024001.
  • Boschetto, A., L. Bottini, L. Macera, and F. Veniali. 2020. “Post-Processing of Complex SLM Parts by Barrel Finishing.” Applied Sciences 10 (4): 1382.
  • Bouland, C., V. Urlea, K. Beaubier, M. Samoilenko, and V. Brailovski. 2019. “Abrasive Flow Machining of Laser Powder bed-Fused Parts: Numerical Modeling and Experimental Validation.” Journal of Materials Processing Technology 273: 116262.
  • Calignano, F., O. A. Peverini, G. Addamo, and L. Iuliano. 2020. “Accuracy of Complex Internal Channels Produced by Laser Powder Bed Fusion Process.” Journal of Manufacturing Processes 54: 48–53.
  • Charles, A., A. Elkaseer, L. Thijs, V. Hagenmeyer, and S. Scholz. 2019. “Effect of Process Parameters on the Generated Surface Roughness of Down-Facing Surfaces in Selective Laser Melting.” Applied Sciences 9 (6): 1256.
  • Choopani, Y., M. R. Razfar, P. Saraeian, and M. Farahnakian. 2016. “Experimental Investigation of External Surface Finishing of AISI 440C Stainless Steel Cylinders Using the Magnetic Abrasive Finishing Process.” The International Journal of Advanced Manufacturing Technology 83 (9): 1811–1821.
  • Concept Laser Cusing M2. [online]. https://www.concept-laser.de/en/products/machines.html.
  • Cooper, D. E., M. Stanford, K. A. Kibble, and G. J. Gibbons. 2012. “Additive Manufacturing for Product Improvement at Red Bull Technology.” Materials & Design 41: 226–230.
  • Dadbakhsh, S., L. Hao, and C. Y. Kong. 2010. “Surface Finish Improvement of LMD Samples Using Laser Polishing.” Virtual and Physical Prototyping 5 (4): 215–221.
  • Dai, D., and D. Gu. 2015. “Tailoring Surface Quality through Mass and Momentum Transfer Modeling Using a Volume of Fluid Method in Selective Laser Melting of TiC/AlSi10Mg Powder.” International Journal of Machine Tools and Manufacture 88: 95–107.
  • Deng, H., R. Huang, K. Liu, and X. Zhang. 2017. “Abrasive-Free Polishing of Tungsten Alloy Using Electrochemical Etching.” Electrochemistry Communications 82: 80–84.
  • Denti, L., E. Bassoli, A. Gatto, E. Santecchia, and P. Mengucci. 2019. “Fatigue Life and Microstructure of Additive Manufactured Ti6Al4 V After Different Finishing Processes.” Materials Science and Engineering: A 755: 1–9.
  • Dolimont, A., A. Demarbaix, F. Ducobu, and E. Rivière-Lorphèvre. 2019. “Chemical Etching as a Finishing Process for Electron Beam Melting (EBM) Parts.” Proceedings of the 22nd International Esaform Conference on Material Forming: Esaform 2019.
  • Dolimont, A., E. Rivière-Lorphèvre, F. Ducobu, and S. Backaert. 2018. Impact of Chemical Polishing on Surface Roughness and Dimensional Quality of Electron Beam Melting Process (EBM) Parts.
  • du Plessis, A., C. Broeckhoven, I. Yadroitsava, I. Yadroitsev, C. H. Hands, R. Kunju, and D. Bhate. 2019. “Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing.” Additive Manufacturing 27: 408–427.
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54: 1–6.
  • EOSINT M 280. Additive Manufacturing of Metal Parts – EOS. [online]. https://www.eos.info/systems_solutions/metal/systems_equipment.
  • Fousova, M., D. Vojtech, K. Doubrava, M. Daniel, and C. F. Lin. 2018. “Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4 V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting.” Materials (Basel) 11 (4): 537.
  • Froes, F. H., and B. Dutta. 2014. “The Additive Manufacturing (AM) of Titanium Alloys.” Advanced Materials Research 1019: 19–25.
  • Ghanekar, A. S., R. H. Crawford, and D. Watson. 2003. Optimization of SLS Process Parameters Using D-Optimality 348, 2003 International Solid Freeform Fabrication Symposium.
  • Gora, W. S., Y. Tian, A. P. Cabo, M. Ardron, R. R. J. Maier, P. Prangnell, N. J. Weston, and D. P. Hand. 2016. “Enhancing Surface Finish of Additively Manufactured Titanium and Cobalt Chrome Elements Using Laser Based Finishing.” Physics Procedia 83: 258–263.
  • Gu, D., D. Dai, W. Chen, and H. Chen. 2016. “Selective Laser Melting Additive Manufacturing of Hard-to-Process Tungsten-Based Alloy Parts With Novel Crystalline Growth Morphology and Enhanced Performance.” Journal of Manufacturing Science and Engineering 138 (8).
  • Gu, Dongdong. 2016. Selective Laser Melting Additive Manufacturing, AM Defects.
  • Gu, D., and Y. Shen. 2008. “Processing Conditions and Microstructural Features of Porous 316L Stainless Steel Components by DMLS.” Applied Surface Science 255 (5, Part 1): 1880–1887.
  • Gu, D., and Y. Shen. 2009. “Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods.” Materials & Design 30 (8): 2903–2910.
  • Guo, J., K. H. Au, C.-N. Sun, M. H. Goh, C. W. Kum, K. Liu, J. Wei, H. Suzuki, and R. Kang. 2019. “Novel Rotating-Vibrating Magnetic Abrasive Polishing Method for Double-Layered Internal Surface Finishing.” Journal of Materials Processing Technology 264: 422–437.
  • Han, S., F. Salvatore, J. Rech, and J. Bajolet. 2020. “Abrasive Flow Machining (AFM) Finishing of Conformal Cooling Channels Created by Selective Laser Melting (SLM).” Precision Engineering 64: 20–33.
  • Han, X., H. Zhu, X. Nie, G. Wang, and X. Zeng. 2018. “Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy.” Materials (Basel) 11 (3): 392. https://doi.org/10.3390/ma11030392.
  • Hassanin, H., L. Finet, S. C. Cox, P. Jamshidi, L. M. Grover, D. E. T. Shepherd, O. Addison, and M. M. Attallah. 2018. “Tailoring Selective Laser Melting Process for Titanium Drug-Delivering Implants with Releasing Micro-Channels.” Additive Manufacturing 20: 144–155.
  • Hassanin, A. E., M. Troiano, A. T. Silvestri, V. Contaldi, F. Scherillo, R. Solimene, F. Scala, A. Squillace, and P. Salatino. 2019. “Fluidised Bed Machining of Metal Additive Manufactured Parts.” AIP Conference Proceedings 2113 (1): 150009.
  • Hunter, L. W., D. Brackett, N. Brierley, J. Yang, and M. M. Attallah. 2020. “Assessment of Trapped Powder Removal and Inspection Strategies for Powder Bed Fusion Techniques.” The International Journal of Advanced Manufacturing Technology 106 (9-10): 4521–4532.
  • Iquebal, A. S., S. E. Amri, S. Shrestha, Z. Wang, G. P. Manogharan, and S. Bukkapatnam. 2017. “Longitudinal Milling and Fine Abrasive Finishing Operations to Improve Surface Integrity of Metal AM Components.” Procedia Manufacturing 10: 990–996.
  • Irrinki, H., T. Harper, S. Badwe, J. Stitzel, O. Gulsoy, G. Gupta, and S. V. Atre. 2018. “Effects of Powder Characteristics and Processing Conditions on the Corrosion Performance of 17-4 PH Stainless Steel Fabricated by Laser-Powder bed Fusion.” Progress in Additive Manufacturing 3 (1-2): 39–49.
  • Jain, V., and S. Adsul. 2000. “Experimental Investigations into Abrasive Flow Machining (AFM).” International Journal of Machine Tools and Manufacture 40 (7): 1003–1021.
  • Jha, S., and V. K. Jain. 2004. “Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process.” International Journal of Machine Tools and Manufacture 44 (10): 1019–1029.
  • Kang, N., Y. Li, X. Lin, E. Feng, and W. Huang. 2019. “Microstructure and Tensile Properties of Ti-Mo Alloys Manufactured via Using Laser Powder Bed Fusion.” Journal of Alloys and Compounds 771: 877–884.
  • Karlsson, J., A. Snis, H. Engqvist, and J. Lausmaa. 2013. “Characterization and Comparison of Materials Produced by Electron Beam Melting (EBM) of Two Different Ti–6Al–4 V Powder Fractions.” Journal of Materials Processing Technology 213 (12): 2109–2118.
  • Karunakaran, K. P., A. Bernard, S. Suryakumar, L. Dembinski, and G. Taillandier. 2012. “Rapid Manufacturing of Metallic Objects.” Rapid Prototyping Journal 18 (4): 264–280.
  • Kim, J.-D., Y.-H. Kang, Y.-H. Bae, and S.-W. Lee. 1997. “Development of a Magnetic Abrasive Jet Machining System for Precision Internal Polishing of Circular Tubes.” Journal of Materials Processing Technology 71 (3): 384–393.
  • Kim, J.-D., and K.-D. Kim. 2004. “Deburring of Burrs in Spring Collets by Abrasive Flow Machining.” The International Journal of Advanced Manufacturing Technology 24 (7-8): 469–473.
  • Kim, W.-B., S.-H. Lee, and B.-K. Min. 2004. “Surface Finishing and Evaluation of Three-Dimensional Silicon Microchannel Using Magnetorheological Fluid.” Journal of Manufacturing Science and Engineering 126 (4): 772.
  • Kordonski, W. I., A. B. Shorey, and M. Tricard. 2004. “Magnetorheological (MR) Jet Finishing Technology.” ASME 2004 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, pp. 77–84.
  • Kruth, J. P., L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers. 2004. “Selective Laser Melting of Iron-Based Powder.” Journal of Materials Processing Technology 149 (1): 616–622.
  • Kum, C. W., C. H. Wu, S. Wan, and C. W. Kang. 2020. “Prediction and Compensation of Material Removal for Abrasive Flow Machining of Additively Manufactured Metal Components.” Journal of Materials Processing Technology 282: 116704.
  • Kumar, S., V. K. Jain, and A. Sidpara. 2015. “Nanofinishing of Freeform Surfaces (Knee Joint Implant) by Rotational-Magnetorheological Abrasive Flow Finishing (R-MRAFF) Process.” Precision Engineering 42 (Suppl. C): 165–178.
  • Lamikiz, A., J. A. Sánchez, L. N. López de Lacalle, and J. L. Arana. 2007. “Laser Polishing of Parts Built Up by Selective Laser Sintering.” International Journal of Machine Tools and Manufacture 47 (12): 2040–2050.
  • Lee, J.-Y., J. An, and C. K. Chua. 2017. “Fundamentals and Applications of 3D Printing for Novel Materials.” Applied Materials Today 7: 120–133.
  • Lee, J.-Y., W. S. Tan, J. An, C. K. Chua, C. Y. Tang, A. G. Fane, and T. H. Chong. 2016. “The Potential to Enhance Membrane Module Design with 3D Printing Technology.” Journal of Membrane Science 499: 480–490.
  • Li, R., J. Liu, Y. Shi, L. Wang, and W. Jiang. 2011. “Balling Behavior of Stainless Steel and Nickel Powder During Selective Laser Melting Process.” The International Journal of Advanced Manufacturing Technology 59 (9-12): 1025–1035.
  • Li, P., D. H. Warner, A. Fatemi, and N. Phan. 2016. “Critical Assessment of the Fatigue Performance of Additively Manufactured Ti–6Al–4 V and Perspective for Future Research.” International Journal of Fatigue 85: 130–143.
  • Löber, L., C. Flache, R. Petters, U. Kühn, and J. Eckert. 2013. “Comparison of Different Post Processing Technologies for SLM Generated 316 l Steel Parts.” Rapid Prototyping Journal 19 (3): 173–179.
  • Lukas, L., F. Christoph, P. Romy, K. Uta, and E. Jürgen. 2013. “Comparison of Different Post Processing Technologies for SLM Generated 316 l Steel Parts.” Rapid Prototyping Journal 19 (3): 173–179.
  • Ma, C. P., Y. C. Guan, and W. Zhou. 2017. “Laser Polishing of Additive Manufactured Ti Alloys.” Optics and Lasers in Engineering 93: 171–177.
  • Malekipour, E., and H. El-Mounayri. 2017. “Common Defects and Contributing Parameters in Powder Bed Fusion AM Process and Their Classification for Online Monitoring and Control: a Review.” The International Journal of Advanced Manufacturing Technology 95 (1-4): 527–550.
  • Marimuthu, S., A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, and M. Beard. 2015. “Laser Polishing of Selective Laser Melted Components.” International Journal of Machine Tools and Manufacture 95: 97–104.
  • Mingear, J., B. Zhang, D. Hartl, and A. Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27: 565–575.
  • Mohammadian, N., S. Turenne, and V. Brailovski. 2018. “Surface Finish Control of Additively-Manufactured Inconel 625 Components Using Combined Chemical-Abrasive Flow Polishing.” Journal of Materials Processing Technology 252: 728–738.
  • Mohammadian, N., S. Turenne, and V. Brailovski. 2019. “Electropolishing of Laser Powder Bed-Fused IN625 Components in an Ionic Electrolyte.” Journal of Manufacturing and Materials Processing 3 (4): 86; https://doi.org/10.3390/jmmp3040086.
  • Mower, T. M., and M. J. Long. 2016. “Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials.” Materials Science and Engineering: A 651: 198–213.
  • Mumtaz, K. A., P. Erasenthiran, and N. Hopkinson. 2008. “High Density Selective Laser Melting of Waspaloy®.” Journal of Materials Processing Technology 195 (1): 77–87.
  • Mumtaz, K., and N. Hopkinson. 2009. “Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting.” Rapid Prototyping Journal 15 (2): 96–103.
  • Nagalingam, A. P., K. L. Tan, M. S. Vohra, W. L. Tan, S. H. Yeo, and A. Wee. 2019a. “Method and Apparatus for Finishing an Internal Channel of a Component.” Google Patent US20190308292A1.
  • Nagalingam, A. P., V. C. Thiruchelvam, and S. H. Yeo. 2019b. “A Novel Hydrodynamic Cavitation Abrasive Technique for Internal Surface Finishing.” Journal of Manufacturing Processes 46: 44–58.
  • Nagalingam, A. P., and S. H. Yeo. 2018. “Controlled Hydrodynamic Cavitation Erosion with Abrasive Particles for Internal Surface Modification of Additive Manufactured Components.” Wear 414-415: 89–100.
  • Nagalingam, A. P., and S. H. Yeo. 2019. “A Method and Apparatus for Finishing a Surface of a Component.” Patent application no: GB1905215.8.
  • Nagalingam, A. P., and S. H. Yeo. 2020a. “Effects of Combined Wear Mechanisms in Internal Surface Finishing Using Controlled Hydrodynamic Cavitation Abrasive Finishing Process.” In Advanced Surface Enhancement. INCASE 2019. Lecture Notes in Mechanical Engineering. edited by S. Itoh, and S. Shukla, 244–253. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0054-1_25
  • Nagalingam, A. P., and S. H. Yeo. 2020b. “Surface Finishing of Additively Manufactured Inconel 625 Complex Internal Channels: A Case Study Using a Multi-Jet Hydrodynamic Approach.” Additive Manufacturing 36: 101428.
  • Nagalingam, A. P., H. K. Yuvaraj, and S. H. Yeo. 2020. “Synergistic Effects in Hydrodynamic Cavitation Abrasive Finishing for Internal Surface-Finish Enhancement of Additive-Manufactured Components.” Additive Manufacturing 33: 101110.
  • Niu, H. J., and I. T. H. Chang. 1999. “Instability of Scan Tracks of Selective Laser Sintering of High Speed Steel Powder.” Scripta Materialia 41 (11): 1229–1234.
  • Obeidi, M. A., E. McCarthy, B. O'Connell, I. Ul Ahad, and D. Brabazon. 2019. “Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting.” Materials 12 (6): 991.
  • Okada, A., Y. Uno, K. Uemura, P. Raharjo, and J. A. McGeough. 2007. “Surface Modification for Orthopaedic Titanium Alloy by Wide-Area Electron Beam.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 221 (2): 173–178.
  • Olakanmi, E. O. 2013. “Selective Laser Sintering/Melting (SLS/SLM) of Pure Al, Al–Mg, and Al–Si Powders: Effect of Processing Conditions and Powder Properties.” Journal of Materials Processing Technology 213 (8): 1387–1405.
  • Orsini, G., B. Assenza, A. Scarano, M. Piattelli, and A. Piattelli. 2000. “Surface Analysis of Machined Versus Sandblasted and Acid-Etched Titanium Implants.” International Journal of Oral & Maxillofacial Implants 15 (6): 779–784.
  • Peng, C., Y. Fu, H. Wei, S. Li, X. Wang, and H. Gao. 2018. “Study on Improvement of Surface Roughness and Induced Residual Stress for Additively Manufactured Metal Parts by Abrasive Flow Machining.” Procedia CIRP 71: 386–389.
  • Petare, A. C., and N. K. Jain. 2018. “A Critical Review of Past Research and Advances in Abrasive Flow Finishing Process.” The International Journal of Advanced Manufacturing Technology 97 (1): 741–782.
  • Peyre, P., X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, and C. Lemaitre. 2000. “Surface Modifications Induced in 316L Steel by Laser Peening and Shot-Peening. Influence on Pitting Corrosion Resistance.” Materials Science and Engineering: A 280 (2): 294–302.
  • Polishetty, A., M. Shunmugavel, M. Goldberg, G. Littlefair, and R. K. Singh. 2017. “Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V.” Procedia Manufacturing 7: 284–289.
  • Pyka, G., A. Burakowski, G. Kerckhofs, M. Moesen, S. Van Bael, J. Schrooten, and M. Wevers. 2012. “Surface Modification of Ti6Al4 V Open Porous Structures Produced by Additive Manufacturing.” Advanced Engineering Materials 14 (6): 363–370.
  • Pyka, G., G. Kerckhofs, I. Papantoniou, M. Speirs, J. Schrooten, and M. Wevers. 2013. “Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4 V Structures.” Materials 6 (10): 4737–4757.
  • Reddy, M. K., A. K. Sharma, and P. Kumar. 2008. “Some Aspects of Centrifugal Force Assisted Abrasive Flow Machining of 2014 Al Alloy.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222 (7): 773–783.
  • Renishaw AM 250. [Online]. http://dmls.net/surface-finishes-tolerances/.
  • Rhoades, L. 1991. “Abrasive Flow Machining: A Case Study.” Journal of Materials Processing Technology 28 (1): 107–116.
  • Rosa, B., P. Mognol, and J.-Y. Hascoët. 2016. “Modelling and Optimization of Laser Polishing of Additive Laser Manufacturing Surfaces.” Rapid Prototyping Journal 22 (6): 956–964.
  • Seifi, M., M. Gorelik, J. Waller, N. Hrabe, N. Shamsaei, S. Daniewicz, and J. J. Lewandowski. 2017. “Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification.” JOM Journal of the Minerals Metals and Materials Society 69 (3): 439–455.
  • Selective Laser Melting SLM. [Online]. https://slm-solutions.com/products/machines/selective-laser-melting-machine-slm-500.
  • Sharma, A. K., G. Venkatesh, S. Rajesha, and P. Kumar. 2015. “Experimental Investigations into Ultrasonic-Assisted Abrasive Flow Machining (UAAFM) Process.” The International Journal of Advanced Manufacturing Technology 80 (1-4): 477–493.
  • Shi, D., and I. Gibson. 2000. “Improving Surface Quality of Selective Laser Sintered Rapid Prototype Parts Using Robotic Finishing.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 214 (3): 197–203.
  • Simchi, A. 2006. “Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features.” Materials Science and Engineering: A 428 (1-2): 148–158.
  • Singh, D. K., V. K. Jain, and V. Raghuram. 2004. “Parametric Study of Magnetic Abrasive Finishing Process.” Journal of Materials Processing Technology 149 (1): 22–29.
  • Singh, A., S. Kapil, and M. Das. 2020. “A Comprehensive Review of the Methods and Mechanisms for Powder Feedstock Handling in Directed Energy Deposition.” Additive Manufacturing 35: 101388.
  • Singh, S., H. S. Shan, and P. Kumar. 2002. “Wear Behavior of Materials in Magnetically Assisted Abrasive Flow Machining.” Journal of Materials Processing Technology 128 (1): 155–161.
  • Snyder, J. C., C. K. Stimpson, K. A. Thole, and D. Mongillo. 2015a. “Build Direction Effects on Additively Manufactured Channels.” ASME Turbo Expo 2015: Turbine Technical Conference and Exposition.
  • Snyder, J. C., C. K. Stimpson, K. A. Thole, and D. J. Mongillo. 2015b. “Build direction effects on additively manufactured channels.” in Heat Transfer. Proceedings of the ASME Turbo Expo, vol. 5A, American Society of Mechanical Engineers (ASME), ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015, Montreal, Canada, June 15, 2015. https://doi.org/10.1115/GT2015-43935.
  • Solyaev, Y., L. Rabinskiy, and D. Tokmakov. 2019. “Overmelting and Closing of Thin Horizontal Channels in AlSi10Mg Samples Obtained by Selective Laser Melting.” Additive Manufacturing 30: 100847.
  • Soyama, H., and D. Sanders. 2019. “Use of an Abrasive Water Cavitating Jet and Peening Process to Improve the Fatigue Strength of Titanium Alloy 6Al-4 V Manufactured by the Electron Beam Powder Bed Melting (EBPB) Additive Manufacturing Method.” JOM Journal of the Minerals Metals and Materials Society 71 (12): 4311–4318.
  • Spierings, A. B., N. Herres, and G. Levy. 2011. “Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts.” Rapid Prototyping Journal 17 (3): 195–202.
  • Spierings, A. B., T. L. Starr, and K. Wegener. 2013. “Fatigue Performance of Additive Manufactured Metallic Parts.” Rapid Prototyping Journal 19 (2): 88–94.
  • Strano, G., L. Hao, R. M. Everson, and K. E. Evans. 2013. “Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting.” Journal of Materials Processing Technology 213 (4): 589–597.
  • Sun, L., S. Tsai, and F. Redeker. 2001. Advanced Electrolytic Polish (AEP) Assisted Metal Wafer Planarization Method and Apparatus. Google Patents.
  • Systems DMP. [online]. https://www.3dsystems.com/3d-printers/prox-dmp-300.
  • Tammas-Williams, S., H. Zhao, F. Léonard, F. Derguti, I. Todd, and P. B. Prangnell. 2015. “XCT Analysis of the Influence of Melt Strategies on Defect Population in Ti–6Al–4V Components Manufactured by Selective Electron Beam Melting.” Materials Characterization 102 (Suppl. C): 47–61.
  • Tan, J. H. K., S. L. Sing, and W. Y. Yeong. 2020. “Microstructure Modelling for Metallic Additive Manufacturing: A Review.” Virtual and Physical Prototyping 15 (1): 87–105.
  • Tan, K. L., and S. H. Yeo. 2017. “Surface Modification of Additive Manufactured Components by Ultrasonic Cavitation Abrasive Finishing.” Wear 378-379: 90–95.
  • Tan, K., and S. Yeo. 2020. “Surface Finishing on IN625 Additively Manufactured Surfaces by Combined Ultrasonic Cavitation and Abrasion.” Additive Manufacturing 31: 100938.
  • Temple, P. A., W. H. Lowdermilk, and D. Milam. 1982. “Carbon Dioxide Laser Polishing of Fused Silica Surfaces for Increased Laser-Damage Resistance at 1064 nm.” Applied Optics 21 (18): 3249–3255.
  • Thijs, L., F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J.-P. Kruth. 2010. “A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4 V.” Acta Materialia 58 (9): 3303–3312.
  • Tian, Y., C. Shi, Z. Fan, and Q. Zhou. 2020. “Experimental Investigations on Magnetic Abrasive Finishing of Ti-6Al-4V Using a Multiple Pole-Tip Finishing Tool.” The International Journal of Advanced Manufacturing Technology 106: 3071–3080. https://doi.org/10.1007/s00170-019-04871-z.
  • Tian, Z., C. Zhang, D. Wang, W. Liu, X. Fang, D. Wellmann, Y. Zhao, and Y. Tian. 2019. “A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy.” Applied Sciences 10 (1): 81.
  • Todaro, C. J., M. A. Easton, D. Qiu, D. Zhang, M. J. Bermingham, E. W. Lui, M. Brandt, D. H. StJohn, and M. Qian. 2020. “Grain Structure Control During Metal 3D Printing by High-Intensity Ultrasound.” Nature Communications 11 (1): 142.
  • Tolochko, N. K., S. E. Mozzharov, I. A. Yadroitsev, T. Laoui, L. Froyen, V. I. Titov, and M. B. Ignatiev. 2004. “Balling Processes During Selective Laser Treatment of Powders.” Rapid Prototyping Journal 10 (2): 78–87.
  • Triantaphyllou, A., C. L. Giusca, G. D. Macaulay, F. Roerig, M. Hoebel, R. K. Leach, B. Tomita, and K. A. Milne. 2015. “Surface Texture Measurement for Additive Manufacturing.” Surface Topography: Metrology and Properties 3 (2): 024002.
  • Tyagi, P., T. Goulet, C. Riso, and F. Garcia-Moreno. 2018. “Reducing Surface Roughness by Chemical Polishing of Additively Manufactured 3D Printed 316 Stainless Steel Components.” The International Journal of Advanced Manufacturing Technology 100 (9-12): 2895–2900.
  • Tyagi, P., T. Goulet, C. Riso, and F. Garcia-Moreno. 2019a. “Reducing Surface Roughness by Chemical Polishing of Additively Manufactured 3D Printed 316 Stainless Steel Components.” The International Journal of Advanced Manufacturing Technology 100 (9): 2895–2900.
  • Tyagi, P., T. Goulet, C. Riso, R. Stephenson, N. Chuenprateep, J. Schlitzer, C. Benton, and F. Garcia-Moreno. 2019b. “Reducing the Roughness of Internal Surface of an Additive Manufacturing Produced 316 Steel Component by Chempolishing and Electropolishing.” Additive Manufacturing 25: 32–38.
  • Tzeng, H.-J., B.-H. Yan, R.-T. Hsu, and Y.-C. Lin. 2006. “Self-modulating Abrasive Medium and its Application to Abrasive Flow Machining for Finishing Micro Channel Surfaces.” The International Journal of Advanced Manufacturing Technology 32 (11-12): 1163–1169.
  • Urlea, V., and V. Brailovski. 2017. “Electropolishing and Electropolishing-Related Allowances for IN625 Alloy Components Fabricated by Laser Powder-Bed Fusion.” The International Journal of Advanced Manufacturing Technology 92 (9-12): 4487–4499.
  • Van Hooreweder, B., K. Lietaert, B. Neirinck, N. Lippiatt, and M. Wevers. 2017. “CoCr F75 Scaffolds Produced by Additive Manufacturing: Influence of Chemical Etching on Powder Removal and Mechanical Performance.” Journal of the Mechanical Behavior of Biomedical Materials 68: 216–223.
  • Vyas, C., G. Poologasundarampillai, J. Hoyland, and P. Bartolo. 2017. “12 - 3D Printing of Biocomposites for Osteochondral Tissue Engineering.” In Biomedical Composites (Second Edition), edited by L. Ambrosio, 261–302. Cambridge: Woodhead Publishing.
  • Wang, P., W. J. Sin, M. L. S. Nai, and J. Wei. 2017. “Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.” Materials 10: 1121.
  • Wang, J., J. Zhu, and P. J. Liew. 2019a. “Material Removal in Ultrasonic Abrasive Polishing of Additive Manufactured Components.” Applied Sciences 9 (24): 5359.
  • Weihs, T. P., A. B. Mann, and P. C. Searson. 2001. Electrochemical-Control of Abrasive Polishing and Machining Rates. Google Patents.
  • Wennerberg, A., T. Albrektsson, C. Johansson, and B. Andersson. 1996. “Experimental Study of Turned and Grit-Blasted Screw-Shaped Implants with Special Emphasis on Effects of Blasting Material and Surface Topography.” Biomaterials 17 (1): 15–22.
  • Witkin, D., H. Helvajian, L. Steffeney, and W. Hansen. 2016. Laser Post-Processing of Inconel 625 Made by Selective Laser Melting. SPIE2016.
  • Wu, P.-Y., and H. Yamaguchi. 2018. “Material Removal Mechanism of Additively Manufactured Components Finished Using Magnetic Abrasive Finishing.” Procedia Manufacturing 26: 394–402.
  • Yadroitsev, I., and I. Smurov. 2010. “Selective Laser Melting Technology: From the Single Laser Melted Track Stability to 3D Parts of Complex Shape.” Physics Procedia 5 (Part B): 551–560.
  • Yamaguchi, H., O. Fergani, and P.-Y. Wu. 2017. “Modification Using Magnetic Field-Assisted Finishing of the Surface Roughness and Residual Stress of Additively Manufactured Components.” CIRP Annals 66 (1): 305–308.
  • Yasa, E., J. Deckers, and J. P. Kruth. 2011. “The Investigation of the Influence of Laser re-Melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts.” Rapid Prototyping Journal 17 (5): 312–327.
  • Yasa, E., O. Poyraz, E. U. Solakoglu, G. Akbulut, and S. Oren. 2016. “A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-Based Superalloy.” Procedia CIRP 45: 175–178.
  • Yin, L., K. Ramesh, S. Wan, X. D. Liu, H. Huang, and Y. C. Liu. 2004. “Abrasive Flow Polishing of Micro Bores.” Materials and Manufacturing Processes 19 (2): 187–207.
  • Yu, W., S. L. Sing, C. K. Chua, and X. Tian. 2019. “Influence of re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581.
  • Yung, K. C., T. Y. Xiao, H. S. Choy, W. J. Wang, and Z. X. Cai. 2018. “Laser Polishing of Additive Manufactured CoCr Alloy Components with Complex Surface Geometry.” Journal of Materials Processing Technology 262: 53–64.
  • Zhang, J., A. Chaudhari, and H. Wang. 2019. “Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel.” Journal of Manufacturing Processes 45: 710–719.
  • Zhang, J., J. Hu, H. Wang, A. S. Kumar, and A. Chaudhari. 2018a. “A Novel Magnetically Driven Polishing Technique for Internal Surface Finishing.” Precision Engineering 54: 222–232.
  • Zhang, Y., L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang. 2018b. “Additive Manufacturing of Metallic Materials: A Review.” Journal of Materials Engineering and Performance 27 (1): 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.