835
Views
26
CrossRef citations to date
0
Altmetric
Articles

Superior energy absorption of continuously graded microlattices by electron beam additive manufacturing

, ORCID Icon, , , , & ORCID Icon show all
Pages 14-28 | Received 25 Sep 2020, Accepted 21 Dec 2020, Published online: 19 Jan 2021

References

  • Ahmadi, S. M., S. Yavari, R. Wauthle, B. Pouran, J. Schrooten, H. Weinans, and A. Zadpoor. 2015. “Additively Manufactured Open-Cell Porous Biomaterials Made From six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties.” Materials 8: 1871–1896.
  • Ashby, M. F. 2006. “The Properties of Foams and Lattices.” Philosophical Transactions of the Royal Society A 364: 15–30.
  • Ashby, M. F., and R. M. Medalist. 1983. “The Mechanical Properties of Cellular Solids.” Metallurgical Transactions A 14: 1755–1769.
  • Brackett, D., I. Ashcroft, and R. Hague. 2011. “Topology Optimization for Additive Manufacturing.” Proceedings of the Solid Freeform Fabrication Symposium 1: 348–362.
  • British Standards Institution. 2012 (2011). Mechanical Testing of Metals — Ductility Testing — Compression Test for Porous and Cellular Metals.
  • Burblies, A., and M. N. V. Busse. 2008. “ Computer Based Porosity Design by Multi Phase Topology Optimization.” AIP Conference Proceedings 973: 285–290.
  • Campoli, G., M. S. Borleffs, S. Amin Yavari, R. Wauthle, H. Weinans, and A. A. Zadpoor. 2013. “Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing.” Materials & Design 49: 957–965.
  • Cheng, X. Y., S. J. Li, L. E. Murr, Z. B. Zhang, Y. L. Hao, R. Yang, F. Medina, and R. B. Wicker. 2012. “Compression Deformation Behavior of Ti–6Al–4 V Alloy with Cellular Structures Fabricated by Electron Beam Melting.” Journal of the Mechanical Behavior of Biomedical Materials 16: 153–162.
  • Cherradi, N., A. Kawasaki, and M. Gasik. 1994. “Worldwide Trends in Functional Gradient Materials Research and Development.” Composites Engineering 4: 883–894.
  • Choy, S. Y., et al. 2018. “Compressive Properties of Electron Beam Melted Lattice Structures with Density Gradient.” In 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018). doi:10.25341/D4X306.
  • Choy, S. Y., C. N. Sun, K. F. Leong, and J. Wei. 2017a. “Compressive Properties of Functionally Graded Lattice Structures Manufactured by Selective Laser Melting.” Materials & Design 131: 112–120.
  • Choy, S. Y., C. N. Sun, K. F. Leong, and J. Wei. 2017b. “Compressive Properties of Ti-6Al-4V Lattice Structures Fabricated by Selective Laser Melting: Design, Orientation and Density.” Additive Manufacturing 16: 213–224.
  • Chua, C. K., and K. F. Leong. 2017. 3D Printing and Additive Manufacturing: Principles and Applications, 5th Edition of Rapid Prototyping: Principles and Applications. World Scientific Publishers.
  • Chung, H., and S. Das. 2008. “Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering.” Materials Science and Engineering: A 487: 251–257.
  • Durejko, T., M. Zietala, W. Polkowski, and T. Czujko. 2014. “Thin Wall Tubes with Fe3Al/SS316L Graded Structure Obtained by Using Laser Engineered net Shaping Technology.” Materials and Design 63: 766–774.
  • Epasto, G., G. Palomba, DD' Andrea, S. Di Bella, R. Mineo, E. Guglielmino, and F. Traina. 2019a. “Experimental Investigation of Rhombic Dodecahedron Micro-Lattice Structures Manufactured by Electron Beam Melting.” Materials Today: Proceedings 7: 578–585.
  • Epasto, G., G. Palomba, D. D'Andrea, E. Guglielmino, S. Di Bella, and F. Traina. 2019b. “Ti-6Al-4V ELI Microlattice Structures Manufactured by Electron Beam Melting: Effect of Unit Cell Dimensions and Morphology on Mechanical Behaviour.” Materials Science and Engineering: A 753: 31–41.
  • Erdal, M., S. Dag, Y. Jande, and C. M. Tekin. 2010. “Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering.” Materials Science Forum 631–632: 253–258.
  • Gibson, L. J., and M. F. Ashby. 1997. Cellular Solids: Structure and Properties. New York: Cambridge University Press.
  • Grunsven, W. van, E. Hernandez-Nava, G. C. Reilly, and R. Goodall. 2014. “Fabrication and Mechanical Characterisation of Titanium Lattices with Graded Porosity.” Metals 4: 401–409.
  • Hazlehurst, K. B., C. J. Wang, and M. Stanford. 2014. “An Investigation Into the Flexural Characteristics of Functionally Graded Cobalt Chrome Femoral Stems Manufactured Using Selective Laser Melting.” Materials and Design 60: 177–183.
  • Hrabe, N. W., P. Heinl, B. Flinn, C. Körner, and R. K. Bordia. 2011. “Compression-compression Fatigue of Selective Electron Beam Melted Cellular Titanium (Ti-6Al-4V).” Journal of Biomedical Materials Research B: Applied Biomaterials 99B: 313–320.
  • International, A. 2015. “Standard Terminology for Additive Manufacturing – General Principles –Terminology”.
  • Kalita, S. J., S. Bose, H. L. Hosick, and A. Bandyopadhyay. 2003. “Development of Controlled Porosity Polymerceramic Composite Scaffolds Via Fused Deposition Modeling.” Materials Science and Engineering: C 23: 611–620.
  • Kawasaki, A., and R. Watanabe. 2002. “Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials.” Engineering Fracture Mechanics 69: 1713–1728.
  • Leong, K. F., C. K. Chua, N. Sudarmadji, and W. Y. Yeong. 2008. “Engineering Functionally Graded Tissue Engineering Scaffolds.” Journal of the Mechanical Behavior of Biomedical Materials 1: 140–152.
  • Li, A., A. S. Thornton, B. Deuser, J. L. Watts, M. C. Leu, G. E. Hilmas, and R. G. Landers. 2012. “Freeze–form Extrusion Fabrication of Functionally Graded Material Composites Using Zirconium Carbide and Tungsten.” 23rd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 467–479.
  • Li, S., Shuo Zhao, Wentao Hou, Chunyu Teng, Yulin Hao, Yi Li, Rui Yang, and R. D. K. Misra. 2016. “Functionally Graded Ti-6Al-4V Meshes with High Strength and Energy Absorption.” Advanced Engineering Materials 18: 34–38.
  • Low, K. H., C. N. Sun, K. F. Leong, Z. H. Liu, and D. Q. Zhang. 2014. Selective Laser Melting of Functionally Graded Ti6Al4 V.
  • Maskery, I., N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague. 2016a. “A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting.” Materials Science and Engineering: A 670: 264–274.
  • Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I. and Hague, R. 2016b. “An Investigation Into Reinforced and Functionally Graded Lattice Structures.” Journal of Cellular Plastics, 1–15. doi:10.1177/0021955X16639035.
  • Mumtaz, K. A., and N. Hopkinson. 2007. “Laser Melting Functionally Graded Composition of Waspaloy® and Zirconia Powders.” Journal of Materials Science 42: 7647–7656.
  • Niendorf, T., A. Riemer, F. Brenne, T. Tröster, H. A. Richard, D. Schwarze. 2014. “Functionally Graded Alloys Obtained by Additive Manufacturing.” Advanced Engineering Materials 16: 857–861.
  • Novak, N., L. Krstulović-Opara, Z. Ren, and M. Vesenjak. 2020a. “Mechanical Properties of Hybrid Metamaterial with Auxetic Chiral Cellular Structure and Silicon Filler.” Composite Structures 234: 111718.
  • Novak, N., L. Starčevič, M. Vesenjak, and Z. Ren. 2019. “Blast Response Study of the Sandwich Composite Panels with 3D Chiral Auxetic Core.” Composite Structures 210: 167–178.
  • Novak, N., M. Vesenjak, and Z. Ren. 2017. “Computational Simulation and Optimization of Functionally Graded Auxetic Structures Made From Inverted Tetrapods.” Physica Status Solidi (b) 254: 1600753.
  • Novak, N., M. Vesenjak, S. Tanaka, K. Hokamoto, and Z. Ren. 2020b. “Compressive Behaviour of Chiral Auxetic Cellular Structures at Different Strain Rates.” International Journal of Impact Engineering 141: 103566.
  • Parthasarathy, J., B. Starly, and S. Raman. 2011. “A Design for the Additive Manufacture of Functionally Graded Porous Structures with Tailored Mechanical Properties for Biomedical Applications.” Journal of Manufacturing Processes 13: 160–170.
  • Ramirez, D. A., L. E. Murr, S. J. Li, Y. X. Tian, E. Martinez, J. L. Martinez, B. I. Machado, S. M. Gaytan, F. Medina, and R. B. Wicker. 2011. “Open-cellular Copper Structures Fabricated by Additive Manufacturing Using Electron Beam Melting.” Materials Science and Engineering A 528: 5379–5386.
  • Razavi, S. M. J., B. Van Hooreweder, and F. Berto. 2020. “Effect of Build Thickness and Geometry on Quasi-Static and Fatigue Behavior of Ti-6Al-4V Produced by Electron Beam Melting.” Additive Manufacturing 36: 101426.
  • Schwerdtfeger, J., P. Heinl, R. F. Singer, and C. Körner. 2010. “Auxetic Cellular Structures Through Selective Electron-Beam Melting.” Physica Status Solidi (b) 247: 269–272.
  • Sing, S. L., W. Y. Yeong, F. E. Wiria, and B. Y. Tay. 2016. “Characterization of Titanium Lattice Structures Fabricated by Selective Laser Melting Using an Adapted Compressive Test Method.” Experimental Mechanics 56: 735–748.
  • Sudarmadji, N., J. Y. Tan, K. F. Leong, C. K. Chua, and Y. T. Loh. 2011. “Investigation of the Mechanical Properties and Porosity Relationships in Selective Laser-Sintered Polyhedral for Functionally Graded Scaffolds.” Acta Biomaterialia 7: 530–537.
  • Tan, X., Y. Kok, W. Q. Toh, Y. J. Tan, M. Descoins, D. Mangelinck, S. B. Tor, K. F. Leong, and C. K. Chua. 2016. “Revealing Martensitic Transformation and α/β Interface Evolution in Electron Beam Melting Three-Dimensional-Printed Ti-6Al-4V.” Scientific Reports 6: 26039.
  • Ullah, I., M. Brandt, and S. Feih. 2016. “Failure and Energy Absorption Characteristics of Advanced 3D Truss Core Structures.” Materials and Design 92: 937–948.
  • Ullah, I., J. Elambasseril, M. Brandt, and S. Feih. 2014. “Performance of bio-Inspired Kagome Truss Core Structures Under Compression and Shear Loading.” Composite Structures 118: 294–302.
  • Wang, P., et al. 2016a. “Anisotropic Mechanical Properties in a Big-sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting.” TMS 2016 145th Annual Meeting & Exhibition, 5–12.
  • Wang, P., et al. 2016b. “Recent Progress of Additive Manufactured Ti-6Al-4V by Electron Beam Melting.” 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, 691–704.
  • Wang, Q. S., S. J. Li, W. T. Hou, S. G. Wang, Y. L. Hao, R. Yang, and R. D. K. Misra. 2020a. “Mechanistic Understanding of Compression-Compression Fatigue Behavior of Functionally Graded Ti–6Al–4 V Mesh Structure Fabricated by Electron Beam Melting.” Journal of the Mechanical Behavior of Biomedical Materials 103: 103590.
  • Wang, P., X. Li, Y. Jiang, M. L. S. Nai, J. Ding, and J. Wei. 2020b. “Electron Beam Melted Heterogeneously Porous Microlattices for Metallic Bone Applications: Design and Investigations of Boundary and Edge Effects.” Additive Manufacturing 36: 101566.
  • Wang, P., X. Li, S. Luo, M. L. S. Nai, J. Ding, and J. Wei. 2021. “Additively Manufactured Heterogeneously Porous Metallic Bone with Biostructural Functions and Bone-Like Mechanical Properties.” Journal of Materials Science & Technology 62: 173–179.
  • Wang, P., M. L. S. Nai, W. J. Sin, S. Lu, B. Zhang, J. Bai, J. Song, and J. Wei. 2018a. “Realizing a Full Volume Component by in-Situ Welding During Electron Beam Melting Process.” Additive Manufacturing 22: 375–380.
  • Wang, P., M. L. S. Nai, W. J. Sin, and J. Wei. 2015. “Effect of Building Height on Microstructure and Mechanical Properties of Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting.” MATEC Web of Conferences 30.
  • Wang, P., J. Song, M. L. S. Nai, and J. Wei. 2020c. “Experimental Analysis of Additively Manufactured Component and Design Guidelines for Lightweight Structures: A Case Study Using Electron Beam Melting.” Additive Manufacturing 33: 101088.
  • Wang, P., Nai XipengTan, M. L. S. Tor, and S. B. & JunWei. 2016c. “Spatial and Geometrical-Based Characterization of Microstructure and Microhardness for an Electron Beam Melted Ti–6Al–4 V Component.” Materials and Design 95: 287–295.
  • Wang, Y., L. Zhang, S. Daynes, H. Zhang, S. Feih, M. Y. Wang. 2018b. “Design of Graded Lattice Structure with Optimized Mesostructures for Additive Manufacturing.” Materials and Design 142: 114–123.
  • Woodfield, T. B. F., J. Malda, J. de Wijn, F. Péters, J. Riesle, and C. A. van Blitterswijk. 2004. “Design of Porous Scaffolds for Cartilage Tissue Engineering Using a Three-Dimensional fiber-Deposition Technique.” Biomaterials 25: 4149–4161.
  • Xiao, L., W. Song, M. Hu, and P. Li. 2019. “Compressive Properties and Micro-Structural Characteristics of Ti–6Al–4 V Fabricated by Electron Beam Melting and Selective Laser Melting.” Materials Science and Engineering: A 764: 138204.
  • Xiao, L., W. Song, C. Wang, H. Liu, H. Tang, and J. Wang. 2015. “Mechanical Behavior of Open-Cell Rhombic Dodecahedron Ti–6Al–4 V Lattice Structure.” Materials Science and Engineering: A 640: 375–384.
  • Yang, L., D. Cormier, H. West, O. Harrysson, and K. Knowlson. 2012. “Non-stochastic Ti–6Al–4 V Foam Structures with Negative Poisson’s Ratio.” Materials Science and Engineering: A 558: 579–585.
  • Yang, S., X. Xue, S. Lou, and F. Lu. 2007. “Investigation on Gradient Material Fabrication with Electron Beam Melting Based on Scanning Track Control.” China Welding 16: 19–22.
  • Zhang, X., L. An, and H. Ding. 2014. “Dynamic Crushing Behavior and Energy Absorption of Honeycombs with Density Gradient.” Journal of Sandwich Structures and Materials 16: 125–147.
  • Zhang, Y. Z., Z. M. Wei, L. Shi, and M. Z. Xi. 2008. “Characterization of Laser Powder Deposited Ti–TiC Composites and Functional Gradient Materials.” Journal of Materials Processing Technology 206: 438–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.