3,642
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent progress on microstructure manipulation of aluminium alloys manufactured via laser powder bed fusion

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Article: e2125880 | Received 03 Sep 2022, Accepted 05 Sep 2022, Published online: 16 Oct 2022

References

  • Agrawal, Priyanka, Sanya Gupta, Saket Thapliyal, Shivakant Shukla, Ravi Sankar Haridas, and Rajiv S. Mishra. 2021. “Additively Manufactured Novel Al–Cu–Sc–Zr Alloy: Microstructure and Mechanical Properties.” Additive Manufacturing 37: 101623. doi:10.1016/j.addma.2020.101623.
  • Ashby, Ava, Gabe Guss, Rishi K. Ganeriwala, Aiden A. Martin, Philip J. DePond, Dave J. Deane, Manyalibo J. Matthews, and Clara L. Druzgalski. 2022. “Thermal History and High-Speed Optical Imaging of Overhang Structures During Laser Powder Bed Fusion: A Computational and Experimental Analysis.” Additive Manufacturing 53: 102669. doi:10.1016/j.addma.2022.102669.
  • Avateffazeli, M., P. E. Carrion, B. Shachi-Amirkhiz, H. Pirgazi, M. Mohammadi, N. Shamsaei, and M. Haghshenas. 2022. “Correlation Between Tensile Properties,: Microstructure, and Processing Routes of an Al–Cu–Mg–Ag–TiB2 (A205) Alloy: Additive Manufacturing and Casting.” Materials Science and Engineering: A 841: 142989. doi:10.1016/j.msea.2022.142989.
  • Bai, Xian-Ming, and Mo Li. 2006. “Calculation of Solid–Liquid Interfacial Free Energy: A Classical Nucleation Theory Based Approach.” The Journal of Chemical Physics 124 (12): 124707. doi:10.1063/1.2184315.
  • Belelli, F., R. Casati, C. Andrianopoli, F. Cuccaro, and M. Vedani. 2022. “Investigation and Characterization of an Al–Mg–Zr–Sc Alloy with Reduced Sc Content for Laser Powder bed Fusion.” Journal of Alloys and Compounds 924: 166519. doi:10.1016/j.jallcom.2022.166519.
  • Boettinger, W. J., S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi. 2000. “Solidification Microstructures: Recent Developments,: Future Directions.” Acta Materialia 48 (1): 43–70. doi:10.1016/S1359-6454(99)00287-6.
  • Bosio, Federico, Haopeng Shen, Yang Liu, Mariangela Lombardi, Paul Rometsch, Xinhua Wu, Yuman Zhu, and Aijun Huang. 2021. “Production Strategy for Manufacturing Large-Scale AlSi10Mg Components by Laser Powder Bed Fusion.” JOM Journal of the Minerals Metals and Materials Society 73 (3): 770–780. doi:10.1007/s11837-020-04523-8.
  • Bradford, Robyn L., Li Cao, Don Klosterman, Fred Herman, Lewis Forman, and Charles Browning. 2021. “A Metal–Metal Powder Formulation Approach for Laser Additive Manufacturing of Difficult-to-Print High-Strength Aluminum Alloys.” Materials Letters 300: 130113. doi:10.1016/j.matlet.2021.130113.
  • Casati, R., M. Coduri, S. Checchia, and M. Vedani. 2021. “Insight Into the Effect of Different Thermal Treatment Routes on the Microstructure of AlSi7Mg Produced by Laser Powder bed Fusion.” Materials Characterization 172: 110881. doi:10.1016/j.matchar.2021.110881.
  • Chen, Yuming, Linzhi Wang, Zhongxue Feng, and Wanneng Zhang. 2021. “Effects of Heat Treatment on Microstructure and Mechanical Properties of SLMed Sc-Modified AlSi10Mg Alloy.” Progress in Natural Science: Materials International 31 (5): 714–721. doi:10.1016/j.pnsc.2021.08.003.
  • Chen, Ying, Chuangwei Xiao, Shang Zhu, Zhiwen Li, Wenxin Yang, Feng Zhao, Shengfu Yu, and Yusheng Shi. 2022. “Microstructure Characterization and Mechanical Properties of Crack-Free Al-Cu–Mg–Y Alloy Fabricated by Laser Powder bed Fusion.” Additive Manufacturing 58: 103006. doi:10.1016/j.addma.2022.103006.
  • Choong, Yu Ying Clarrisa, Hong Wei Tan, Deven C. Patel, Wan Ting Natalie Choong, Chun-Hsien Chen, Hong Yee Low, Ming Jen Tan, Chandrakant D. Patel, and Chee Kai Chua. 2020. “The Global Rise of 3D Printing During the COVID-19 Pandemic.” Nature Reviews Materials 5 (9): 637–639. doi:10.1038/s41578-020-00234-3.
  • Coen, Viktor, Louca Goossens, and Brecht Van Hooreweder. 2022. “Methodology and Experimental Validation of Analytical Melt Pool Models for Laser Powder bed Fusion.” Journal of Materials Processing Technology 304: 117547. doi:10.1016/j.jmatprotec.2022.117547.
  • Collins, P. C., D. A. Brice, P. Samimi, I. Ghamarian, and H. L. Fraser. 2016. “Microstructural Control of Additively Manufactured Metallic Materials.” Annual Review of Materials Research 46 (1): 63–91. doi:10.1146/annurev-matsci-070115-031816.
  • Cunningham, Ross, Cang Zhao, Niranjan Parab, Christopher Kantzos, Joseph Pauza, Kamel Fezzaa, Tao Sun, and Anthony D. Rollett. 2019. “Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed x-ray Imaging.” Science 363 (6429): 849–852. doi:10.1126/science.aav4687.
  • Damon, James, Robin Koch, Daniel Kaiser, Gregor Graf, Stefan Dietrich, and Volker Schulze. 2019. “Process Development and Impact of Intrinsic Heat Treatment on the Mechanical Performance of Selective Laser Melted AISI 4140.” Additive Manufacturing 28: 275–284. doi:10.1016/j.addma.2019.05.012.
  • Dinda, G. P., A. K. Dasgupta, and J. Mazumder. 2012. “Texture Control During Laser Deposition of Nickel-Based Superalloy.” Scripta Materialia 67 (5): 503–506. doi:10.1016/j.scriptamat.2012.06.014.
  • Ekubaru, Yusufu, Ozkan Gokcekaya, Takuya Ishimoto, Kazuhisa Sato, Koki Manabe, Pan Wang, and Takayoshi Nakano. 2022. “Excellent Strength–Ductility Balance of Sc–Zr–Modified Al–Mg Alloy by Tuning Bimodal Microstructure via Hatch Spacing in Laser Powder bed Fusion.” Materials & Design 221: 110976. doi:10.1016/j.matdes.2022.110976.
  • Fan, Zhenhua, Xingchen Yan, Zhiyong Fu, Ben Niu, Junfu Chen, Yongjun Hu, Cheng Chang, and Jianglong Yi. 2021. “In Situ Formation of D022-Al3Ti During Selective Laser Melting of Nano-TiC/AlSi10Mg Alloy Prepared by Electrostatic Self-Assembly.” Vacuum 188: 110179. doi:10.1016/j.vacuum.2021.110179.
  • Fiocchi, J., A. Tuissi, and C. A. Biffi. 2021. “Heat Treatment of Aluminium Alloys Produced by Laser Powder bed Fusion: A Review.” Materials & Design 204: 109651. doi:10.1016/j.matdes.2021.109651.
  • Garmendia, X., S. Chalker, M. Bilton, C. J. Sutcliffe, and P. R. Chalker. 2020. “Microstructure and Mechanical Properties of Cu-Modified AlSi10Mg Fabricated by Laser-Powder Bed Fusion.” Materialia 9: 100590. doi:10.1016/j.mtla.2020.100590.
  • Ghoncheh, M. H., M. Sanjari, A. Shojaei Zoeram, E. Cyr, B. Shalchi Amirkhiz, A. Lloyd, M. Haghshenas, and M. Mohammadi. 2021. “On the Microstructure and Solidification Behavior of new Generation Additively Manufactured Al–Cu–Mg–Ag–Ti–B Alloys.” Additive Manufacturing 37: 101724. doi:10.1016/j.addma.2020.101724.
  • Ghosh, Abhi, Xianglong Wang, Anne-Marie Kietzig, and Mathieu Brochu. 2018. “Layer-by-Layer Combination of Laser Powder bed Fusion (LPBF) and Femtosecond Laser Surface Machining of Fabricated Stainless Steel Components.” Journal of Manufacturing Processes 35: 327–336. doi:10.1016/j.jmapro.2018.08.016.
  • Gu, Dongdong, Xinyu Shi, Reinhart Poprawe, David L. Bourell, Rossitza Setchi, and Jihong Zhu. 2021. “Material-structure-performance Integrated Laser-Metal Additive Manufacturing.” Science 372 (6545): eabg1487. doi:10.1126/science.abg1487.
  • Guan, Ren-Guo, and Di Tie. 2017. “A Review on Grain Refinement of Aluminum Alloys: Progresses,: Challenges and Prospects.” Acta Metallurgica Sinica (English Letters) 30 (5): 409–432. doi:10.1007/s40195-017-0565-8.
  • Guo, Meng, Kai Liu, Jingjia Sun, and Dongdong Gu. 2022. “Laser Powder Bed Fusion of a Novel Nano-Modified Tungsten Alloy with Refined Microstructure and Enhanced Strength.” Materials Science and Engineering: A 843: 143096. doi:10.1016/j.msea.2022.143096.
  • Guo, Yanwu, Wu Wei, Wei Shi, Xiaorong Zhou, Shengping Wen, Xiaolan Wu, Kunyuan Gao, et al. 2022. “Microstructure and Mechanical Properties of Al–Mg–Mn–Er–Zr Alloys Fabricated by Laser Powder bed Fusion.” Materials & Design 222: 111064. doi:10.1016/j.matdes.2022.111064.
  • He, Peidong, Qian Liu, Jamie J. Kruzic, and Xiaopeng Li. 2022. “Machine-learning Assisted Additive Manufacturing of a TiCN Reinforced AlSi10Mg Composite with Tailorable Mechanical Properties.” Materials Letters 307: 131018. doi:10.1016/j.matlet.2021.131018.
  • He, Peidong, Richard F. Webster, Vladislav Yakubov, Hui Kong, Qin Yang, Shuke Huang, Michael Ferry, Jamie J. Kruzic, and Xiaopeng Li. 2021. “Fatigue and Dynamic Aging Behavior of a High Strength Al-5024 Alloy Fabricated by Laser Powder bed Fusion Additive Manufacturing.” Acta Materialia 220: 117312. doi:10.1016/j.actamat.2021.117312.
  • Hesselmann, Marcel, Daniel Knoop, Jérémy Epp, Volker Uhlenwinkel, Axel von Hehl, and Anastasiya Toenjes. 2022. “Effect of Precipitation-Forming Elements in a Near-Eutectic Al–Ce Alloy for Laser Powder Bed Fusion.” Additive Manufacturing 57: 102959. doi:10.1016/j.addma.2022.102959.
  • Hojjatzadeh, S., H. Mohammad, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Minglei Qu, et al. 2019. “Pore Elimination Mechanisms During 3D Printing of Metals.” Nature Communications 10 (1): 3088. doi:10.1038/s41467-019-10973-9.
  • Hyer, Holden, Le Zhou, Abhishek Mehta, Sharon Park, Thinh Huynh, Shutao Song, Yuanli Bai, Kyu Cho, Brandon McWilliams, and Yongho Sohn. 2021. “Composition-dependent Solidification Cracking of Aluminum-Silicon Alloys During Laser Powder bed Fusion.” Acta Materialia 208: 116698. doi:10.1016/j.actamat.2021.116698.
  • Jandaghi, Mohammad Reza, Alberta Aversa, Diego Manfredi, Flaviana Calignano, Luca Lavagna, and Matteo Pavese. 2022. “In Situ Alloying of AlSi10Mg–5 wt% Ni Through Laser Powder bed Fusion and Subsequent Heat Treatment.” Journal of Alloys and Compounds 904: 164081. doi:10.1016/j.jallcom.2022.164081.
  • Jiang, L. Y., T. T. Liu, C. D. Zhang, K. Zhang, M. C. Li, T. Ma, and W. H. Liao. 2018. “Preparation and Mechanical Properties of CNTs-AlSi10Mg Composite Fabricated via Selective Laser Melting.” Materials Science and Engineering: A 734: 171–177. doi:10.1016/j.msea.2018.07.092.
  • Jiang, Runbo, Amir Mostafaei, Ziheng Wu, Ann Choi, Pin-Wen Guan, Markus Chmielus, and Anthony D. Rollett. 2020. “Effect of Heat Treatment on Microstructural Evolution and Hardness Homogeneity in Laser Powder bed Fusion of Alloy 718.” Additive Manufacturing 35: 101282. doi:10.1016/j.addma.2020.101282.
  • Joshi, Sunil C., and Abdullah A. Sheikh. 2015. “3D Printing in Aerospace and its Long-Term Sustainability.” Virtual and Physical Prototyping 10 (4): 175–185. doi:10.1080/17452759.2015.1111519.
  • Karg, Michael Cornelius Hermann, Bhrigu Ahuja, Sebastian Wiesenmayer, Sergey Vyacheslavovich Kuryntsev, and Michael Schmidt. 2017. “Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn) Additively Manufactured by Laser Beam Melting in Powder Bed.” Micromachines 8 (1): 23. doi:10.3390/mi8010023.
  • Karimi, Paria, Esmaeil Sadeghi, Joakim Ålgårdh, Ali Keshavarzkermani, Reza Esmaeilizadeh, Ehsan Toyserkani, and Joel Andersson. 2021. “Columnar-to-equiaxed Grain Transition in Powder bed Fusion via Mimicking Casting Solidification and Promoting in Situ Recrystallization.” Additive Manufacturing 46: 102086. doi:10.1016/j.addma.2021.102086.
  • Kaufmann, N., M. Imran, T. M. Wischeropp, C. Emmelmann, S. Siddique, and F. Walther. 2016. “Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM).” Physics Procedia 83: 918–926. doi:10.1016/j.phpro.2016.08.096.
  • Kempf, A., and K. Hilgenberg. 2020. “Influence of sub-Cell Structure on the Mechanical Properties of AlSi10Mg Manufactured by Laser Powder bed Fusion.” Materials Science and Engineering: A 776: 138976. doi:10.1016/j.msea.2020.138976.
  • Khorasani, Amir Mahyar, Ian Gibson, AmirHossein Ghasemi, and Alireza Ghaderi. 2020. “Modelling of Laser Powder bed Fusion Process and Analysing the Effective Parameters on Surface Characteristics of Ti–6Al–4V.” International Journal of Mechanical Sciences 168: 105299. doi:10.1016/j.ijmecsci.2019.105299.
  • Kimura, Masaaki, Akihiro Hirayama, Junya Yoshioka, Hosei Maekawa, Masahiro Kusaka, Koichi Kaizu, and Tsuyoshi Takahashi. 2020. “Mechanical Properties of AlSi12 Alloy Manufactured by Laser Powder Bed Fusion Technique.” Journal of Failure Analysis and Prevention 20 (6): 1884–1895. doi:10.1007/s11668-020-00998-4.
  • Kimura, Takahiro, Takayuki Nakamoto, Masataka Mizuno, and Hideki Araki. 2017. “Effect of Silicon Content on Densification, Mechanical and Thermal Properties of Al-xSi Binary Alloys Fabricated Using Selective Laser Melting.” Materials Science and Engineering: A 682: 593–602. doi:10.1016/j.msea.2016.11.059.
  • Konopatsky, Anton S., Dmitry G. Kvashnin, Shakti Corthay, Ivan Boyarintsev, Konstantin L. Firestein, Anton Orekhov, Natalya Arkharova, Dmitry V. Golberg, and Dmitry V. Shtansky. 2021. “Microstructure Evolution During AlSi10Mg Molten Alloy/BN Microflake Interactions in Metal Matrix Composites Obtained Through 3D Printing.” Journal of Alloys and Compounds 859: 157765. doi:10.1016/j.jallcom.2020.157765.
  • Kou, Sindo. 2015. “A Criterion for Cracking During Solidification.” Acta Materialia 88: 366–374. doi:10.1016/j.actamat.2015.01.034.
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967.
  • Lefebvre, Williams, Grégory Rose, Pauline Delroisse, Eric Baustert, Fabien Cuvilly, and Aude Simar. 2021. “Nanoscale Periodic Gradients Generated by Laser Powder bed Fusion of an AlSi10Mg Alloy.” Materials & Design 197: 109264. doi:10.1016/j.matdes.2020.109264.
  • Leirmo, Julie Langedahl. 2021. “High Strength Aluminium Alloys in Laser-Based Powder Bed Fusion – a Review.” Procedia CIRP 104: 1747–1752. doi:10.1016/j.procir.2021.11.294.
  • Leung, Chu Lun Alex, Sebastian Marussi, Robert C. Atwood, Michael Towrie, Philip J. Withers, and Peter D. Lee. 2018. “In Situ X-ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing.” Nature Communications 9 (1): 1355. doi:10.1038/s41467-018-03734-7.
  • Li, Chonggui, Shuai Sun, Youfeng Zhang, Chuanming Liu, Peiran Deng, Ming Zeng, Feifei Wang, Pan Ma, Wenge Li, and You Wang. 2019. “Effects of Laser Processing Parameters on Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg Alloys Reinforced by TiC.” The International Journal of Advanced Manufacturing Technology 103 (5): 3235–3246. doi:10.1007/s00170-019-04001-9.
  • Li, E. L., L. Wang, A. B. Yu, and Z. Y. Zhou. 2021. “A Three-Phase Model for Simulation of Heat Transfer and Melt Pool Behaviour in Laser Powder bed Fusion Process.” Powder Technology 381: 298–312. doi:10.1016/j.powtec.2020.11.061.
  • Li, Gan, Xinwei Li, Chuan Guo, Yang Zhou, Qiyang Tan, Wenying Qu, Xinggang Li, Xiaogang Hu, Ming-Xing Zhang, and Qiang Zhu. 2022. “Investigation Into the Effect of Energy Density on Densification, Surface Roughness and Loss of Alloying Elements of 7075 Aluminium Alloy Processed by Laser Powder bed Fusion.” Optics & Laser Technology 147: 107621. doi:10.1016/j.optlastec.2021.107621.
  • Li, Guichuan, Suraj Dinkar Jadhav, Arturo Martín, Maria L. Montero-Sistiaga, Jeroen Soete, Maria San Sebastian, Carmen M. Cepeda-Jiménez, and Kim Vanmeensel. 2021. “Investigation of Solidification and Precipitation Behavior of Si-Modified 7075 Aluminum Alloy Fabricated by Laser-Based Powder Bed Fusion.” Metallurgical and Materials Transactions A 52 (1): 194–210. doi:10.1007/s11661-020-06073-9.
  • Li, Xiang, Yunzhong Liu, and Zhiguang Zhou. 2022. “Grain Refinement and Performance Enhancement of Laser Powder bed Fusion in-Situ Processed Al-Mg Alloy Modified by ScH3 and ZrH2.” Materials Characterization 190: 112068. doi:10.1016/j.matchar.2022.112068.
  • Li, Xinwei, Dawang Li, Gan Li, and Qizhou Cai. 2022. “Microstructure, Mechanical Properties, Aging Behavior, and Corrosion Resistance of a Laser Powder bed Fusion Fabricated Al–Zn–Mg–Cu–Ta Alloy.” Materials Science and Engineering: A 832: 142364. doi:10.1016/j.msea.2021.142364.
  • Li, Xuxiao, and Wenda Tan. 2018. “Numerical Investigation of Effects of Nucleation Mechanisms on Grain Structure in Metal Additive Manufacturing.” Computational Materials Science 153: 159–169. doi:10.1016/j.commatsci.2018.06.019.
  • Liu, Jian, and Albert C. To. 2017. “Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing Using Selective Laser Melting.” Additive Manufacturing 16: 58–64. doi:10.1016/j.addma.2017.05.005.
  • Liu, Mengna, Kaiwen Wei, Runsen Zhou, Xiaoze Yue, and Xiaoyan Zeng. 2022. “Microstructure and Mechanical Property of High Power Laser Powder bed Fusion AlSi10Mg Alloy Before and After T6 Heat Treatment.” Virtual and Physical Prototyping 17 (4): 749–767. doi:10.1080/17452759.2022.2068294.
  • Liu, Qian, Hongkun Wu, Moses J. Paul, Peidong He, Zhongxiao Peng, Bernd Gludovatz, Jamie J. Kruzic, Chun H. Wang, and Xiaopeng Li. 2020. “Machine-learning Assisted Laser Powder bed Fusion Process Optimization for AlSi10Mg: New Microstructure Description Indices and Fracture Mechanisms.” Acta Materialia 201: 316–328. doi:10.1016/j.actamat.2020.10.010.
  • Lough, Cody S., Xin Wang, Christopher C. Smith, Robert G. Landers, Douglas A. Bristow, James A. Drallmeier, Ben Brown, and Edward C. Kinzel. 2020. “Correlation of SWIR Imaging with LPBF 304L Stainless Steel Part Properties.” Additive Manufacturing 35: 101359. doi:10.1016/j.addma.2020.101359.
  • Lu, Zhao, Lijun Zhang, Jiang Wang, Qingrong Yao, Guanghui Rao, and Huaiying Zhou. 2019. “Understanding of Strengthening and Toughening Mechanisms for Sc-Modified Al-Si-(Mg) Series Casting Alloys Designed by Computational Thermodynamics.” Journal of Alloys and Compounds 805: 415–425. doi:10.1016/j.jallcom.2019.07.069.
  • Ma, Rulong, Chaoqun Peng, Zhiyong Cai, Richu Wang, Zhaohui Zhou, Xiaogeng Li, and Xuanyang Cao. 2020. “Effect of Bimodal Microstructure on the Tensile Properties of Selective Laser Melt Al–Mg–Sc–Zr Alloy.” Journal of Alloys and Compounds 815: 152422. doi:10.1016/j.jallcom.2019.152422.
  • Mair, Philipp, Valerie Sue Goettgens, Tobias Rainer, Nikolaus Weinberger, Ilse Letofsky-Papst, Stefan Mitsche, and Gerhard Leichtfried. 2021. “Laser Powder bed Fusion of Nano-CaB6 Decorated 2024 Aluminum Alloy.” Journal of Alloys and Compounds 863: 158714. doi:10.1016/j.jallcom.2021.158714.
  • Mair, Philipp, Lukas Kaserer, Jakob Braun, Janko Stajkovic, Christian Klein, David Schimbäck, Lukas Perfler, Evgeny Zhuravlev, Olaf Kessler, and Gerhard Leichtfried. 2022. “Dependence of Mechanical Properties and Microstructure on Solidification Onset Temperature for Al2024–CaB6 Alloys Processed Using Laser Powder bed Fusion.” Materials Science and Engineering: A 833: 142552. doi:10.1016/j.msea.2021.142552.
  • Makoana, Nkutwane Washington, Ina Yadroitsava, Heinrich Möller, and Igor Yadroitsev. 2018. “Characterization of 17-4PH Single Tracks Produced at Different Parametric Conditions Towards Increased Productivity of LPBF Systems—The Effect of Laser Power and Spot Size Upscaling.” Metals 8 (7): 475.
  • Maleki, E., S. Bagherifard, S. M. J. Razavi, M. Bandini, A. du Plessis, F. Berto, and M. Guagliano. 2022. “On the Efficiency of Machine Learning for Fatigue Assessment of Post-Processed Additively Manufactured AlSi10Mg.” International Journal of Fatigue 160: 106841. doi:10.1016/j.ijfatigue.2022.106841.
  • Marola, Silvia, Dario Gianoglio, Federico Bosio, Alberta Aversa, Massimo Lorusso, Diego Manfredi, Mariangela Lombardi, and Livio Battezzati. 2020. “Alloying AlSi10Mg and Cu Powders in Laser Single Scan Tracks, Melt Spinning, and Laser Powder Bed Fusion.” Journal of Alloys and Compounds 821: 153538. doi:10.1016/j.jallcom.2019.153538.
  • Martin, John H., Brennan D. Yahata, Jacob M. Hundley, Justin A. Mayer, Tobias A. Schaedler, and Tresa M. Pollock. 2017. “3D Printing of High-Strength Aluminium Alloys.” Nature 549 (7672): 365–369. doi:10.1038/nature23894.
  • Megahed, Mustafa, Hans-Wilfried Mindt, Jöerg Willems, Paul Dionne, Lars Jacquemetton, James Craig, Piyush Ranade, and Alonso Peralta. 2019. “LPBF Right the First Time—the Right Mix Between Modeling and Experiments.” Integrating Materials and Manufacturing Innovation 8 (2): 194–216. doi:10.1007/s40192-019-00133-8.
  • Metelkova, Jitka, Lars Vanmunster, Han Haitjema, and Brecht Van Hooreweder. 2021. “Texture of Inclined up-Facing Surfaces in Laser Powder bed Fusion of Metals.” Additive Manufacturing 42: 101970. doi:10.1016/j.addma.2021.101970.
  • Moyle, M. S., N. Haghdadi, W. J. Davids, X. Z. Liao, S. P. Ringer, and S. Primig. 2022. “Evidence of in-Situ Cu Clustering as a Function of Laser Power During Laser Powder bed Fusion of 17–4 PH Stainless Steel.” Scripta Materialia 219: 114896. doi:10.1016/j.scriptamat.2022.114896.
  • Nayak, S. K., S. K. Mishra, C. P. Paul, A. N. Jinoop, and K. S. Bindra. 2020. “Effect of Energy Density on Laser Powder bed Fusion Built Single Tracks and Thin Wall Structures with 100 µm Preplaced Powder Layer Thickness.” Optics & Laser Technology 125: 106016. doi:10.1016/j.optlastec.2019.106016.
  • Otani, Yuki, and Shinya Sasaki. 2020. “Effects of the Addition of Silicon to 7075 Aluminum Alloy on Microstructure,: Mechanical Properties, and Selective Laser Melting Processability.” Materials Science and Engineering: A 777: 139079. doi:10.1016/j.msea.2020.139079.
  • Pant, Prabhat, Filomena Salvemini, Sebastian Proper, Vladimir Luzin, Kjell Simonsson, Sören Sjöström, Seyed Hosseini, Ru Lin Peng, and Johan Moverare. 2022. “A Study of the Influence of Novel Scan Strategies on Residual Stress and Microstructure of L-Shaped LPBF IN718 Samples.” Materials & Design 214: 110386. doi:10.1016/j.matdes.2022.110386.
  • Pantawane, Mangesh V., Yee-Hsien Ho, Sameehan S. Joshi, and Narendra B. Dahotre. 2020. “Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy.” Scientific Reports 10 (1): 7579. doi:10.1038/s41598-020-63281-4.
  • Pérez-Ruiz, José David, Luis Norberto López de Lacalle, Gorka Urbikain, Octavio Pereira, Silvia Martínez, and Jorge Bris. 2021. “On the Relationship Between Cutting Forces and Anisotropy Features in the Milling of LPBF Inconel 718 for Near net Shape Parts.” International Journal of Machine Tools and Manufacture 170: 103801. doi:10.1016/j.ijmachtools.2021.103801.
  • Platl, Jan, Sabine Bodner, Christina Hofer, Andreas Landefeld, Harald Leitner, Christoph Turk, Marc-André Nielsen, et al. 2022. “Cracking Mechanism in a Laser Powder bed Fused Cold-Work Tool Steel: The Role of Residual Stresses, Microstructure and Local Elemental Concentrations.” Acta Materialia 225: 117570. doi:10.1016/j.actamat.2021.117570.
  • Prasad, Arvind, Lang Yuan, Peter Lee, Mitesh Patel, Dong Qiu, Mark Easton, and David StJohn. 2020. “Towards Understanding Grain Nucleation Under Additive Manufacturing Solidification Conditions.” Acta Materialia 195: 392–403. doi:10.1016/j.actamat.2020.05.012.
  • Qi, Yang, Zhiheng Hu, Hu Zhang, Xiaojia Nie, Changchun Zhang, and Haihong Zhu. 2021. “High Strength Al–Li Alloy Development for Laser Powder bed Fusion.” Additive Manufacturing 47: 102249. doi:10.1016/j.addma.2021.102249.
  • Qin, Hong, Vahid Fallah, Qingshan Dong, Mathieu Brochu, Mark R. Daymond, and Mark Gallerneault. 2018. “Solidification Pattern, Microstructure and Texture Development in Laser Powder Bed Fusion (LPBF) of Al10SiMg Alloy.” Materials Characterization 145: 29–38. doi:10.1016/j.matchar.2018.08.025.
  • Qu, Shuo, Junhao Ding, Jin Fu, Mingwang Fu, Baicheng Zhang, and Xu Song. 2021. “High-precision Laser Powder bed Fusion Processing of Pure Copper.” Additive Manufacturing 48: 102417. doi:10.1016/j.addma.2021.102417.
  • Rakhmonov, Jovid U., David Weiss, and David C. Dunand. 2022. “Solidification Microstructure, Aging Evolution and Creep Resistance of Laser Powder-bed Fused Al–7Ce–8Mg (wt%).” Additive Manufacturing 55: 102862. doi:10.1016/j.addma.2022.102862.
  • Ramirez, A., Ma Qian, B. Davis, T. Wilks, and D. H. StJohn. 2008. “Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys.” Scripta Materialia 59 (1): 19–22. doi:10.1016/j.scriptamat.2008.02.017.
  • Ramoni, Monsuru, Ragavanantham Shanmugam, Nimel Sworna Ross, and Munish Kumar Gupta. 2021. “An Experimental Investigation of Hybrid Manufactured SLM Based Al–Si10–Mg Alloy Under Mist Cooling Conditions.” Journal of Manufacturing Processes 70: 225–235. doi:10.1016/j.jmapro.2021.08.045.
  • Riener, Kirstin, Steffen Oswald, Michael Winkler, and Gerhard J. Leichtfried. 2021. “Influence of Storage Conditions and Reconditioning of AlSi10Mg Powder on the Quality of Parts Produced by Laser Powder bed Fusion (LPBF).” Additive Manufacturing 39: 101896. doi:10.1016/j.addma.2021.101896.
  • Rometsch, Paul A., Yuman Zhu, Xinhua Wu, and Aijun Huang. 2022. “Review of High-Strength Aluminium Alloys for Additive Manufacturing by Laser Powder bed Fusion.” Materials & Design 219: 110779. doi:10.1016/j.matdes.2022.110779.
  • Sabzi, Hossein Eskandari, Suhyun Maeng, Xingzhong Liang, Marco Simonelli, Nesma T. Aboulkhair, and Pedro E. J. Rivera-Díaz-del-Castillo. 2020. “Controlling Crack Formation and Porosity in Laser Powder bed Fusion: Alloy Design and Process Optimisation.” Additive Manufacturing 34: 101360. doi:10.1016/j.addma.2020.101360.
  • Schimbäck, D., P. Mair, M. Bärtl, F. Palm, G. Leichtfried, S. Mayer, P. J. Uggowitzer, and S. Pogatscher. 2022. “Alloy Design Strategy for Microstructural-Tailored Scandium-Modified Aluminium Alloys for Additive Manufacturing.” Scripta Materialia 207: 114277. doi:10.1016/j.scriptamat.2021.114277.
  • Schmidtke, K., F. Palm, A. Hawkins, and C. Emmelmann. 2011. “Process and Mechanical Properties: Applicability of a Scandium Modified Al-Alloy for Laser Additive Manufacturing.” Physics Procedia 12: 369–374. doi:10.1016/j.phpro.2011.03.047.
  • Shu, Da, Baode Sun, J. Mi, and P. S. Grant. 2011. “A Quantitative Study of Solute Diffusion Field Effects on Heterogeneous Nucleation and the Grain Size of Alloys.” Acta Materialia 59 (5): 2135–2144. doi:10.1016/j.actamat.2010.12.014.
  • Sohrabpoor, H., V. Salarvand, R. Lupoi, Q. Chu, W. Li, B. Aldwell, W. Stanley, et al. 2021. “Microstructural and Mechanical Evaluation of Post-Processed SS 316L Manufactured by Laser-Based Powder bed Fusion.” Journal of Materials Research and Technology 12: 210–220. doi:10.1016/j.jmrt.2021.02.090.
  • Somlo, K., B. H. Frodal, C. V. Funch, K. Poulios, G. Winther, O. S. Hopperstad, T. Børvik, and C. F. Niordson. 2022. “Anisotropic Yield Surfaces of Additively Manufactured Metals Simulated with Crystal Plasticity.” European Journal of Mechanics - A/Solids 94: 104506. doi:10.1016/j.euromechsol.2022.104506.
  • Spierings, A. B., K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublin, F. Palm, and K. Wegener. 2017. “Microstructural Features of Sc- and Zr-Modified Al-Mg Alloys Processed by Selective Laser Melting.” Materials & Design 115: 52–63. doi:10.1016/j.matdes.2016.11.040.
  • Spierings, A. B., K. Dawson, P. J. Uggowitzer, and K. Wegener. 2018. “Influence of SLM Scan-Speed on Microstructure,: Precipitation of Al3Sc Particles and Mechanical Properties in Sc- and Zr-Modified Al-Mg Alloys.” Materials & Design 140: 134–143. doi:10.1016/j.matdes.2017.11.053.
  • Tan, Qiyang, Zhiqi Fan, Xiaoqin Tang, Yu Yin, Gan Li, Danni Huang, Jingqi Zhang, et al. 2021. “A Novel Strategy to Additively Manufacture 7075 Aluminium Alloy with Selective Laser Melting.” Materials Science and Engineering: A 821: 141638. doi:10.1016/j.msea.2021.141638.
  • Tan, Qiyang, Yu Yin, Arvind Prasad, Gan Li, Qiang Zhu, David Henry StJohn, and Ming-Xing Zhang. 2022. “Demonstrating the Roles of Solute and Nucleant in Grain Refinement of Additively Manufactured Aluminium Alloys.” Additive Manufacturing 49: 102516. doi:10.1016/j.addma.2021.102516.
  • Tan, Qiyang, Jingqi Zhang, Ning Mo, Zhiqi Fan, Yu Yin, Michael Bermingham, Yingang Liu, Han Huang, and Ming-Xing Zhang. 2020. “A Novel Method to 3D-Print Fine-Grained AlSi10Mg Alloy with Isotropic Properties via Inoculation with LaB6 Nanoparticles.” Additive Manufacturing 32: 101034. doi:10.1016/j.addma.2019.101034.
  • Tan, Qiyang, Jingqi Zhang, Qiang Sun, Zhiqi Fan, Gan Li, Yu Yin, Yingang Liu, and Ming-Xing Zhang. 2020. “Inoculation Treatment of an Additively Manufactured 2024 Aluminium Alloy with Titanium Nanoparticles.” Acta Materialia 196: 1–16. doi:10.1016/j.actamat.2020.06.026.
  • Thampy, Vivek, Anthony Y. Fong, Nicholas P. Calta, Jenny Wang, Aiden A. Martin, Philip J. Depond, Andrew M. Kiss, et al. 2020. “Subsurface Cooling Rates and Microstructural Response During Laser Based Metal Additive Manufacturing.” Scientific Reports 10 (1): 1981. doi:10.1038/s41598-020-58598-z.
  • Thapliyal, Saket, Mageshwari Komarasamy, Le Zhou Shivakant Shukla, Holden Hyer, Sharon Park, Yongho Sohn, and Rajiv S. Mishra. 2020. “An Integrated Computational Materials Engineering-Anchored Closed-Loop Method for Design of Aluminum Alloys for Additive Manufacturing.” Materialia 9: 100574. doi:10.1016/j.mtla.2019.100574.
  • Thijs, Lore, Karolien Kempen, Jean-Pierre Kruth, and Jan Van Humbeeck. 2013. “Fine-structured Aluminium Products with Controllable Texture by Selective Laser Melting of pre-Alloyed AlSi10Mg Powder.” Acta Materialia 61 (5):1809-1819. doi:10.1016/j.actamat.2012.11.052.
  • Uddin, Syed Z., Lawrence E. Murr, Cesar A. Terrazas, Philip Morton, David A. Roberson, and Ryan B. Wicker. 2018. “Processing and Characterization of Crack-Free Aluminum 6061 Using High-Temperature Heating in Laser Powder bed Fusion Additive Manufacturing.” Additive Manufacturing 22: 405–415. doi:10.1016/j.addma.2018.05.047.
  • Van Cauwenbergh, P., V. Samaee, L. Thijs, J. Nejezchlebová, P. Sedlák, A. Iveković, D. Schryvers, B. Van Hooreweder, and K. Vanmeensel. 2021. “Unravelling the Multi-Scale Structure–Property Relationship of Laser Powder bed Fusion Processed and Heat-Treated AlSi10Mg.” Scientific Reports 11 (1): 6423. doi:10.1038/s41598-021-85047-2.
  • Vrancken, Bey, Rishi K. Ganeriwala, and Manyalibo J. Matthews. 2020. “Analysis of Laser-Induced Microcracking in Tungsten Under Additive Manufacturing Conditions: Experiment and Simulation.” Acta Materialia 194: 464–472. doi:10.1016/j.actamat.2020.04.060.
  • Wang, Di, Linqing Liu, Guowei Deng, Cheng Deng, Yuchao Bai, Yongqiang Yang, Weihui Wu, et al. 2022. “Recent Progress on Additive Manufacturing of Multi-Material Structures with Laser Powder bed Fusion.” Virtual and Physical Prototyping 17 (2): 329–365. doi:10.1080/17452759.2022.2028343.
  • Wang, Tingting, Yilong Wang, Xu Yang, Baijin Chen, and Haihong Zhu. 2022. “Cracks and Process Control in Laser Powder bed Fusion of Al–Zn–Mg Alloy.” Journal of Manufacturing Processes 81: 571–579. doi:10.1016/j.jmapro.2022.06.066.
  • Wang, Xiang, Lin-Jie Zhang, Jie Ning, Sen Li, and Suck-Joo Na. 2021. “Effect of Addition of Micron-Sized Lanthanum Oxide Particles on Morphologies, Microstructures and Properties of the Wire Laser Additively Manufactured Ti–6Al–4 V Alloy.” Materials Science and Engineering: A 803: 140475. doi:10.1016/j.msea.2020.140475.
  • Wang, Zihong, Xin Lin, Jingfeng Wang, Nan Kang, Yunlong Hu, Danqian Wang, Hongyun Li, Weidong Huang, and Fushen Pan. 2022. “Remarkable Strength-Impact Toughness Conflict in High-Strength Al-Mg-Sc-Zr Alloy Fabricated via Laser Powder bed Fusion Additive Manufacturing.” Additive Manufacturing 59: 103093. doi:10.1016/j.addma.2022.103093.
  • Wen, Peng, Yu Qin, Yanzhe Chen, Maximilian Voshage, Lucas Jauer, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2019. “Laser Additive Manufacturing of Zn Porous Scaffolds: Shielding gas Flow, Surface Quality and Densification.” Journal of Materials Science & Technology 35 (2): 368–376. doi:10.1016/j.jmst.2018.09.065.
  • Xiao, Y. K., Z. Y. Bian, Y. Wu, G. Ji, Y. Q. Li, M. J. Li, Q. Lian, Z. Chen, A. Addad, and H. W. Wang. 2019. “Effect of Nano-TiB2 Particles on the Anisotropy in an AlSi10Mg Alloy Processed by Selective Laser Melting.” Journal of Alloys and Compounds 798: 644–655. doi:10.1016/j.jallcom.2019.05.279.
  • Xiao, Yunmian, Yongqiang Yang, Shibiao Wu, Di Wang Jie Chen, and Changhui Song. 2022. “Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere.” Acta Metallurgica Sinica (English Letters) 35 (3): 486–500. doi:10.1007/s40195-021-01354-7.
  • Yang, Feipeng, Jianying Wang, Tao Wen, Lei Zhang, Xixi Dong, Dong Qiu, Hailin Yang, and Shouxun Ji. 2022. “Developing a Novel High-Strength Al–Mg–Zn–Si Alloy for Laser Powder bed Fusion.” Materials Science and Engineering: A 851: 143636. doi:10.1016/j.msea.2022.143636.
  • Yang, Kun V., Yunjia Shi, Frank Palm, Xinhua Wu, and Paul Rometsch. 2018. “Columnar to Equiaxed Transition in Al–Mg(–Sc)–Zr Alloys Produced by Selective Laser Melting.” Scripta Materialia 145: 113–117. doi:10.1016/j.scriptamat.2017.10.021.
  • Yang, Tao, Tingting Liu, Wenhe Liao, Eric MacDonald, Huiliang Wei, Changdong Zhang, Xiangyuan Chen, and Kai Zhang. 2020. “Laser Powder bed Fusion of AlSi10Mg: Influence of Energy Intensities on Spatter and Porosity Evolution, Microstructure and Mechanical Properties.” Journal of Alloys and Compounds 849: 156300. doi:10.1016/j.jallcom.2020.156300.
  • Yap, C. Y., C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing. 2015. “Review of Selective Laser Melting: Materials and Applications.” Applied Physics Reviews 2 (4): 041101. doi:10.1063/1.4935926.
  • Yavari, R., A. Riensche, E. Tekerek, L. Jacquemetton, H. Halliday, M. Vandever, A. Tenequer, et al. 2021. “Digitally Twinned Additive Manufacturing: Detecting Flaws in Laser Powder bed Fusion by Combining Thermal Simulations with in-Situ Meltpool Sensor Data.” Materials & Design 211: 110167. doi:10.1016/j.matdes.2021.110167.
  • Yavari, Reza, Ziyad Smoqi, Alex Riensche, Ben Bevans, Humaun Kobir, Heimdall Mendoza, Hyeyun Song, Kevin Cole, and Prahalada Rao. 2021. “Part-scale Thermal Simulation of Laser Powder bed Fusion Using Graph Theory: Effect of Thermal History on Porosity, Microstructure Evolution, and Recoater Crash.” Materials & Design 204: 109685. doi:10.1016/j.matdes.2021.109685.
  • Ye, Jianchao, Saad A. Khairallah, Alexander M. Rubenchik, Michael F. Crumb, Gabe Guss, Jim Belak, and Manyalibo J. Matthews. 2019. “Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing.” Advanced Engineering Materials 21 (7): 1900185. doi:10.1002/adem.201900185.
  • Yu, W. H., S. L. Sing, C. K. Chua, C. N. Kuo, and X. L. Tian. 2019. “Particle-reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the art Review.” Progress in Materials Science 104: 330–379. doi:10.1016/j.pmatsci.2019.04.006.
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017.
  • Yu, Wenhui, Zhen Xiao, Xuhui Zhang, Yetao Sun, Peng Xue, Shuai Tan, Yongling Wu, and Hongyu Zheng. 2022. “Processing and Characterization of Crack-Free 7075 Aluminum Alloys with Elemental Zr Modification by Laser Powder bed Fusion.” Materials Science in Additive Manufacturing 1 (1): 4. doi:10.18063/msam.v1i1.4.
  • Yuan, Weihao, Hui Chen, Shuai Li, Yuhua Heng, Shuo Yin, and Qingsong Wei. 2022. “Understanding of Adopting Flat-top Laser in Laser Powder bed Fusion Processed Inconel 718 Alloy: Simulation of Single-Track Scanning and Experiment.” Journal of Materials Research and Technology 16: 1388–1401. doi:10.1016/j.jmrt.2021.12.077.
  • Zhang, Bo, Wu Wei, Wei Shi, Yanwu Guo, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Li Rong, Hui Huang, and Zuoren Nie. 2022. “Effect of Heat Treatment on the Microstructure and Mechanical Properties of Er-Containing Al–7Si–0.6 Mg Alloy by Laser Powder bed Fusion.” Journal of Materials Research and Technology 18: 3073–3084. doi:10.1016/j.jmrt.2022.04.023.
  • Zhang, Han, Dongdong Gu, and Donghua Dai. 2022. “Laser Printing Path and its Influence on Molten Pool Configuration, Microstructure and Mechanical Properties of Laser Powder bed Fusion Processed Rare Earth Element Modified Al-Mg Alloy.” Virtual and Physical Prototyping 17 (2): 308–328. doi:10.1080/17452759.2022.2036530.
  • Zhang, Haolin, Chaitanya Krishna Prasad Vallabh, and Xiayun Zhao. 2022. “Registration and Fusion of Large-Scale Melt Pool Temperature and Morphology Monitoring Data Demonstrated for Surface Topography Prediction in LPBF.” Additive Manufacturing 58: 103075. doi:10.1016/j.addma.2022.103075.
  • Zhang, Xing, Bo Mao, Leslie Mushongera, Julia Kundin, and Yiliang Liao. 2021. “Laser Powder bed Fusion of Titanium Aluminides: An Investigation on Site-Specific Microstructure Evolution Mechanism.” Materials & Design 201: 109501. doi:10.1016/j.matdes.2021.109501.
  • Zhang, Xuan, Hao Xu, Zhongjie Li, Anping Dong, Dafan Du, Liming Lei, Guodong Zhang, Donghong Wang, Guoliang Zhu, and Baode Sun. 2021. “Effect of the Scanning Strategy on Microstructure and Mechanical Anisotropy of Hastelloy X Superalloy Produced by Laser Powder Bed Fusion.” Materials Characterization 173: 110951. doi:10.1016/j.matchar.2021.110951.
  • Zhang, Xuhui, Zhen Xiao, Wenhui Yu, Chee Kai Chua, Lihua Zhu, Zongshen Wang, Peng Xue, Shuai Tan, Yongling Wu, and Hongyu Zheng. 2022. “Influence of Erbium Addition on the Defects of Selective Laser-Melted 7075 Aluminium Alloy.” Virtual and Physical Prototyping 17 (2): 406–418. doi:10.1080/17452759.2021.1990358.
  • Zhao, Zhanyong, Peikang Bai, R. D. K. Misra, Mengyao Dong, Renguo Guan, Yanjun Li, Jiaoxia Zhang, et al. 2019. “AlSi10Mg Alloy Nanocomposites Reinforced with Aluminum-Coated Graphene: Selective Laser Melting, Interfacial Microstructure and Property Analysis.” Journal of Alloys and Compounds 792: 203–214. doi:10.1016/j.jallcom.2019.04.007.
  • Zhou, Le, Thinh Huynh, Sharon Park, Holden Hyer, Abhishek Mehta, Shutao Song, Yuanli Bai, Brandon McWilliams, Kyu Cho, and Yongho Sohn. 2020. “Laser Powder bed Fusion of Al–10 wt% Ce Alloys: Microstructure and Tensile Property.” Journal of Materials Science 55 (29): 14611–14625. doi:10.1007/s10853-020-05037-z.
  • Zhou, Le, Holden Hyer, Jinfa Chang, Abhishek Mehta, Thinh Huynh, Yang Yang, and Yongho Sohn. 2021. “Microstructure, Mechanical Performance, and Corrosion Behavior of Additively Manufactured Aluminum Alloy 5083 with 0.7 and 1.0 wt% Zr Addition.” Materials Science and Engineering: A 823: 141679. doi:10.1016/j.msea.2021.141679.
  • Zhou, Le, Holden Hyer, Sharon Park, Hao Pan, Yuanli Bai, Katherine P. Rice, and Yongho Sohn. 2019. “Microstructure and Mechanical Properties of Zr-Modified Aluminum Alloy 5083 Manufactured by Laser Powder bed Fusion.” Additive Manufacturing 28: 485–496. doi:10.1016/j.addma.2019.05.027.
  • Zhou, S. Y., Y. Su, H. Wang, J. Enz, T. Ebel, and M. Yan. 2020. “Selective Laser Melting Additive Manufacturing of 7xxx Series Al-Zn-Mg-Cu Alloy: Cracking Elimination by co-Incorporation of Si and TiB2.” Additive Manufacturing 36: 101458. doi:10.1016/j.addma.2020.101458.