2,622
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of Fe addition on the microstructure, transformation behaviour and superelasticity of NiTi alloys fabricated by laser powder bed fusion

, , , , , , , & show all
Article: e2126376 | Received 28 Jun 2022, Accepted 13 Sep 2022, Published online: 02 Oct 2022

References

  • Andersson, J.-O., T. Helander, L. Hoglund, P. Shi, and B. Sundman. 2002. “Thermo-Calc & DICTRA, Computational Tools for Materials Science.” Calphad 26: 273–312. doi:10.1016/S0364-5916(02)00037-8.
  • Baghbaderani, K. S., M. Nematollahi, P. Bayatimalayeri, H. Dabbaghi, A. Jahadakbarand, and M. Elahinia. 2020. “Mechanical Evaluation Of Selective Laser Melted Ni-Rich Niti: Compression, Tension, And Torsion.” ArXiv 15659, doi:10.48550/arXiv.2006.15659.
  • Bandyopadhyay, A., Y. Zhang, and B. Onuike. 2022. “Additive Manufacturing of Bimetallic Structures.” Virtual and Physical Prototyping 17: 256–294. doi:10.1080/17452759.2022.2040738.
  • Barik, L., and S. K. Samal. 2022. “NiTi-based Coupling Devices.” In Nickel-Titanium Smart Hybrid Materials, edited by S. Thomas, A. Behera, and T. A. Nguyen, 215–243. Amsterdam: Elsevier.
  • Biesiekierski, A., J. Wang, M. A.-H. Gepreel, and C. Wen. 2012. “A new Look at Biomedical Ti-Based Shape Memory Alloys.” Acta Biomaterialia 8: 1661–1669. doi:10.1016/j.actbio.2012.01.018.
  • Bormann, T., G. Schulz, H. Deyhle, F. Beckmann, M. de Wild, J. Kuffer, C. Munch, W. Hoffmann, and B. Muller. 2014. “Combining Micro Computed Tomography and Three-Dimensional Registration to Evaluate Local Strains in Shape Memory Scaffolds.” Acta Biomaterialia 10: 1024–1034. doi:10.1016/j.actbio.2013.11.007.
  • Bouabbou, A., and S. Vaudreuil. 2022. “Understanding Laser-Metal Interaction in Selective Laser Melting Additive Manufacturing Through Numerical Modelling and Simulation: A Review.” Virtual and Physical Prototyping 17: 543–562. doi:10.1080/17452759.2022.2052488.
  • Chen, X., X. Peng, B. Chen, J. Han, Z. Zeng, and N. Hu. 2015. “Experimental Investigation on Transformation, Reorientation and Plasticity of Ni47Ti44Nb9SMA Under Biaxial Thermal–Mechanical Loading.” Smart Materials and Structures 24: 075025. doi:10.1088/0964-1726/24/7/075025.
  • Chen, Y., A. Li, Z. Ma, T. Wang, Y. Liu, K. Yu, F. Yang, et al. 2021. “Step-wise R Phase Transformation Rendering High-Stability two-way Shape Memory Effect of a NiTiFe-Nb Nanowire Composite.” Acta Materialia 219: 117258. doi:10.1016/j.actamat.2021.117258.
  • DebRoy, T., H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. De Wilson-Heid, and W. Zhang. 2018. “Additive Manufacturing of Metallic Components – Process, Structure and Properties.” Progress in Materials Science 92: 112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Deng, J., C. Chen, X. Liu, Y. Li, K. Zhou, and S. Guo. 2021. “A High-Strength Heat-Resistant Al−5.7Ni Eutectic Alloy with Spherical Al3Ni Nano-Particles by Selective Laser Melting.” Scripta Materialia 203: 114034. doi:10.1016/j.scriptamat.2021.114034.
  • Elahinia, M., N. S. Moghaddam, M. T. Andani, A. Amerinatanzi, B. A. Bimber, and R. F. Hamilton. 2016. “Fabrication of NiTi through Additive Manufacturing: A Review.” Progress in Materials 83: 630–663. doi: 10.1016/j.pmatsci.2016.08.001.
  • Elahinia, M., N. S. Moghaddam, A. Amerinatanzi, S. Saedi, G. P. Toker, H. Karaca, G. S. Bigelow, and O. Benafan. 2018. “Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy.” Scripta Materialia 145: 90–94. doi:10.1016/j.scriptamat.2017.10.016.
  • Elahinia, M. H., M. Hashemi, M. Tabesh, and S. B. Bhaduri. 2012. “Manufacturing and Processing of NiTi Implants: A Review.” Progress in Materials Science 57: 911–946. doi:10.1016/j.pmatsci.2011.11.001.
  • Fan, Q. C., Y. Zhang, Y. H. Zhang, Y. Y. Wang, E. H. Yan, S. K. Huang, and Y. H. Wen. 2019. “Influence of Ni/Ti Ratio and Nb Addition on Martensite Transformation Behavior of NiTiNb Alloys.” Journal of Alloys and Compounds 790: 1167–1176. doi:10.1016/j.jallcom.2019.02.330.
  • Frenzel, J., E. P. George, A. Dlouhy, C. Somsen, M. F.-X. Wagner, and G. Eggeler. 2010. “Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys.” Acta Materialia 58: 3444–3458. doi:10.1016/j.actamat.2010.02.019.
  • Frenzel, J., A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler. 2015. “On the Effect of Alloy Composition on Martensite Start Temperatures and Latent Heats in Ni–Ti-Based Shape Memory Alloys.” Acta Materialia 90: 213–231. doi:10.1016/j.actamat.2015.02.029.
  • Frenzel, J., Z. Zhang, C. Somsen, K. Neuking, and G. Eggeler. 2007. “Influence of Carbon on Martensitic Phase Transformations in NiTi Shape Memory Alloys.” Acta Materialia 55: 1331–1341. doi:10.1016/j.actamat.2006.10.006.
  • Gao, T., S. Zhang, G. Liu, Q. Sun, J. Liu, Q. Sun, J. Sun, Z. Wang, X. Liu, and X. Wang. 2021. “A High Strength AlSi10Mg Alloy Fabricated by Laser Powder bed Fusion with Addition of Al–Ti–C–B Master Alloy Powders.” Materialia 16: 101103.
  • Gowri, S., and F. H. Samuel. 1992. “Effect of Cooling Rate on the Solidification Behavior of Al-7 pct Si-SiCp Matal-Matrix Composites.” Metallurgical Transactions A 23: 3369–3376. doi:10.1007/BF02663446.
  • Gu, D., X. Shi, R. Poprawe, D. L. Bourell, R. Setchi, and J. Zhu. 2021. “Material-structure-performance Integrated Laser-Metal Additive Manufacturing.” Science 372: 1487. doi:10.1126/science.abg1487.
  • Haberland, C., M. Elahinia, J. M. Walker, H. Meier, and J. Frenzel. 2014. “On the Development of High Quality NiTi Shape Memory and Pseudoelastic Parts by Additive Manufacturing.” Smart Materials and Structures 23: 104002. doi:10.1088/0964-1726/23/10/104002.
  • Hassan, M. R., M. Mehrpouya, and S. Dawood. 2014. “Review of the Machining Difficulties of Nickel-Titanium Based Shape Memory Alloys.” Applied Mechanics and Materials 564: 533–537. doi:10.4028/www.scientific.net/AMM.564.533.
  • Hayrettin, C., O. Karakoc, I. Karaman, J. H. Mabe, R. Santamarta, and J. Pons. 2019. “Two way Shape Memory Effect in NiTiHf High Temperature Shape Memory Alloy Tubes.” Acta Materialia 163: 1–13. doi:10.1016/j.actamat.2018.09.058.
  • He, X. M., L. J. Rong, D. S. Yan, and Y. Y. Li. 2005. “Temperature Memory Effect of Ni47Ti44Nb9 Wide Hysteresis Shape Memory Alloy.” Scripta Materialia 53: 1411–1415. doi:10.1016/j.scriptamat.2005.08.022.
  • Huang, S., P. Kumar, W. Y. Yeong, R. L. Narayan, and U. Ramamurty. 2022. “Fracture Behavior of Laser Powder bed Fusion Fabricated Ti41Nb via in-Situ Alloying.” Acta Materialia 225: 117593. doi:10.1016/j.actamat.2021.117593.
  • Huang, S., R. L. Narayan, J. H. K. Tan, S. L. Sing, and W. Y. Yeong. 2021. “Resolving the Porosity-Unmelted Inclusion Dilemma During in-Situ Alloying of Ti34Nb via Laser Powder bed Fusion.” Acta Materialia 204: 116522. doi:10.1016/j.actamat.2020.116522.
  • Hyer, H., L. Zhou, A. Mehta, S. Park, T. Huynh, S. Song, Y. Bai, K. Cho, B. McWilliams, and Y. Sohn. 2021. “Composition-dependent Solidification Cracking of Aluminum-Silicon Alloys During Laser Powder bed Fusion.” Acta Materialia 208: 116698.
  • Jahadakbar, A., M. Nematollahi, K. Safaei, P. Bayati, G. Giri, H. Dabbaghi, D. Dean, and M. Elahinia. 2020. “Design, Modeling, Additive Manufacturing, and Polishing of Stiffness-Modulated Porous Nitinol Bone Fixation Plates Followed by Thermomechanical and Composition Analysis.” Metals 10: 151. doi:10.3390/met10010151.
  • Khairallah, S. A., A. T. Anderson, A. Rubenchik, and W. E. King. 2016. “Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Acta Materialia 108: 36–45. doi:10.1016/j.actamat.2016.02.014.
  • Kim, S. H., H. Lee, S. M. Yeon, C. Aranas Jr, K. Choi, J. Yoon, S. W. Yang, and H. Lee. 2021. “Selective Compositional Range Exclusion via Directed Energy Deposition to Produce a Defect-Free Inconel 718/SS 316L Functionally Graded Material.” Additive Manufacturing 47: 102288. doi:10.1016/j.addma.2021.102288.
  • Kim, S. H., S.-M. Yeon, J. H. Lee, Y. W. Kim, H. Lee, J. Park, N.-K. Lee, et al. 2020. “Additive Manufacturing of a Shift Block via Laser Powder bed Fusion: The Simultaneous Utilisation of Optimised Topology and a Lattice Structure.” Virtual and Physical Prototyping 15: 460–480. doi:10.1080/17452759.2020.1818917.
  • Kim, Y.-K., M.-C. Kim, and K.-A. Lee. 2022. “1.45 GPa Ultrastrong Cryogenic Strength with Superior Impact Toughness in the in-Situ Nano Oxide Reinforced CrMnFeCoNi High-Entropy Alloy Matrix Nanocomposite Manufactured by Laser Powder bed Fusion.” Journal of Materials Science & Technology 97: 10–19. doi:10.1016/j.jmst.2021.04.030.
  • Kou, S. 2015a. “A Criterion for Cracking During Solidification.” Acta Materialia 88: 366–374. doi:10.1016/j.actamat.2015.01.034.
  • Kou, S. 2015b. “A Simple Index for Predicting the Susceptibility of Solidification Cracking.” Welding Journal 94: 374–388.
  • Krishnan, V. B., R. M. Manjeri, B. Clausen, D. W. Brown, and R. Vaidyanathan. 2008. “Analysis of Neutron Diffraction Spectra Acquired in Situ During Mechanical Loading of Shape Memory NiTiFe at low Temperatures.” Materials Science and Engineering A 481-482: 3–10. doi:10.1016/j.msea.2006.11.176
  • Li, G., S. D. Jadhav, A. Martín, M. L. Montero-Sistiaga, J. Soete, M. S. Sebastian, C. M. Cepeda-Jiménez, and K. Vanmeensel. 2020. “Investigation of Solidification and Precipitation Behavior of Si-Modified 7075 Aluminum Alloy Fabricated by Laser-Based Powder bed Fusion.” Metallurgical and Materials Transactions A 52: 194–210. doi:10.1007/s11661-020-06073-9.
  • Li, H. F., F. L. Nie, Y. F. Zheng, Y. Cheng, S. C. Wei, and R. Z. Valiev. 2019. “Nanocrystalline Ti49.2Ni50.8 Shape Memory Alloy as Orthopaedic Implant Material with Better Performance.” Journal of Materials Science & Technology 35: 2156–2162. doi:10.1016/j.jmst.2019.04.026.
  • Li, S., H. Hassanin, M. M. Attallah, N. J. Adkins, and K. Essa. 2016. “The Development of TiNi-Based Negative Poisson's Ratio Structure Using Selective Laser Melting.” Acta Materialia 105: 75–83. doi:10.1016/j.actamat.2015.12.017.
  • Liu, J., and S. Kou. 2016. “Crack Susceptibility of Binary Aluminum Alloys During Solidification.” Acta Materialia 110: 84–94. doi:10.1016/j.actamat.2016.03.030.
  • Liu, Y., J. I. Kim, and S. Miyazaki. 2004. “Thermodynamic Analysis of Ageing-Induced Multiple-Stage Transformation Behaviour of NiTi.” Philosophical Magazine 84: 2083–2102. doi:10.1080/14786430410001678262.
  • Lu, H. Z., T. Chen, L. H. Liu, H. Wang, X. Luo, C. H. Song, Z. Wang, and C. Yang. 2022a. “Constructing Function Domains in NiTi Shape Memory Alloys by Additive Manufacturing.” Virtual and Physical Prototyping 17: 563–581. doi:10.1080/17452759.2022.2053821.
  • Lu, H. Z., L. H. Liu, C. Yang, X. Luo, C. H. Song, Z. Wang, J. Wang, et al. 2022b. “Simultaneous Enhancement of Mechanical and Shape Memory Properties by Heat-Treatment Homogenization of Ti2Ni Precipitates in TiNi Shape Memory Alloy Fabricated by Selective Laser Melting.” Journal of Materials Science & Technology 101: 205–216. doi:10.1016/j.jmst.2021.06.019.
  • Lu, H. Z., H. W. Ma, W. S. Cai, X. Luo, Z. Wang, C. H. Song, S. Yin, and C. Yang. 2021. “Stable Tensile Recovery Strain Induced by a Ni4Ti3 Nanoprecipitate in a Ni50.4Ti49.6 Shape Memory Alloy Fabricated via Selective Laser Melting.” Acta Materialia 219: 117261. doi:10.1016/j.actamat.2021.117261.
  • Ma, J., I. Karaman, and R. D. Noebe. 2013. “High Temperature Shape Memory Alloys.” International Materials Reviews 55: 257–315. doi:10.1179/095066010X12646898728363
  • Martin, J. H., B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, and T. M. Pollock. 2017. “3D Printing of High-Strength Aluminium Alloys.” Nature 549: 365–369. doi:10.1038/nature23894.
  • Martinez, R., I. Todd, and K. Mumtaz. 2019. “In Situ Alloying of Elemental Al-Cu12 Feedstock Using Selective Laser Melting.” Virtual and Physical Prototyping 14: 242–252. doi:10.1080/17452759.2019.1584402.
  • Miyazaki, S. 2017. “My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys.” Shape Memory and Superelasticity 3: 279–314. doi:10.1007/s40830-017-0122-3.
  • Miyazaki, S., S. Kimura, and K. Otsuka. 1988. “Shape-memory Effect and Pseudoelasticity Associated with the R-Phase Transition in Ti-50·5 at.% Ni Single Crystals.” Philosophical Magazine A 57: 467–478. doi:10.1080/01418618808204680.
  • Miyazaki, S., Y. Kohiyama, K. Otsuka, and T. W. Duerig. 1990. “Effects of Several Factors on the Ductility of the Ti-Ni Alloys.” Materials Science Forum 56-58: 765–770. doi:10.4028/www.scientific.net/MSF.56-58.765
  • Nematollahi, M., S. E. Saghaian, K. Safaei, P. Bayati, P. Bassani, C. Biffi, A. Tuissi, H. Karaca, and M. Elahinia. 2021. “Building Orientation-Structure-Property in Laser Powder bed Fusion of NiTi Shape Memory Alloy.” Journal of Alloys and Compounds 873: 159791. doi:10.1016/j.jallcom.2021.159791.
  • Oliveira, J. P., R. M. Miranda, and F. M. Braz Fernandes. 2017. “Welding and Joining of NiTi Shape Memory Alloys: A Review.” Progress in Materials Science 88: 412–466. doi:10.1016/j.pmatsci.2017.04.008.
  • Otsuka, K., and X. Ren. 2005. “Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys.” Progress in Materials Science 50: 511–678. doi:10.1016/j.pmatsci.2004.10.001.
  • Ou, S., B. Peng, Y. Chen, and M. Tsai. 2018. “Manufacturing and Characterization of NiTi Alloy with Functional Properties by Selective Laser Melting.” Metals 8: 342. doi:10.3390/met8050342.
  • Parvizi, S., S. M. Hashemi, F. Asgarinia, M. Nematollahi, and M. Elahinia. 2020. “Effective Parameters on the Final Properties of NiTi-Based Alloys Manufactured by Powder Metallurgy Methods: A Review.” Progress in Materials Science 117: 100739. doi:10.1016/j.pmatsci.2020.100739.
  • Sampath, S., and T. A. Nguyen. 2022. “NiTi-based Ternary Shape-Memory Alloys.” In Nickel-Titanium Smart Hybrid Materials, edited by S. Thomas, A. Behera, and T. A. Nguyen, 123–137. Amsterdam: Elsevier.
  • Shi, G., L. Li, Z. Yu, R. Liu, P. Sha, Z. Xu, Y. Guo, et al. 2022. “The Interaction Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties in Additive Manufacturing of Ni-Rich NiTi Alloy.” Journal of Manufacturing Processes 77: 539–550. doi:10.1016/j.jmapro.2022.03.027.
  • Shi, X., H. Yang, H. Mao, Y. Li, J. Zhang, and X. Yin. 2018. “Effect of Plastic Deformation of V Nanowires on the Transformation Characteristics of NiTiV Alloys.” Materials Science and Engineering A 735: 162–165. doi:10.1016/j.msea.2018.08.041.
  • Shu, X. Y., S. Q. Lu, G. F. Li, J. W. Liu, and P. Peng. 2014. “Nb Solution Influencing on Phase Transformation Temperature of Ni47Ti44Nb9 Alloy.” Journal of Alloys and Compounds 609: 156–161. doi:10.1016/j.jallcom.2014.04.165.
  • Sing, S. L., S. Huang, G. D. Goh, G. L. Goh, C. F. Tey, J. H. K. Tan, and W. Y. Yeong. 2021. “Emerging Metallic Systems for Additive Manufacturing: In-Situ Alloying and Multi-Metal Processing in Laser Powder bed Fusion.” Progress in Materials Science 119: 100795. doi:10.1016/j.pmatsci.2021.100795.
  • Sing, S. L., F. E. Wiria, and W. Y. Yeong. 2018. “Selective Laser Melting of Titanium Alloy with 50 wt% Tantalum: Effect of Laser Process Parameters on Part Quality.” International Journal of Refractory Metals and Hard Materials 77: 120–127. doi:10.1016/j.ijrmhm.2018.08.006.
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15: 359–370. doi:10.1080/17452759.2020.1779999.
  • Sui, S., Y. Chew, F. Weng, C. Tan, Z. Du, and G. Bi. 2021. “Achieving Grain Refinement and Ultrahigh Yield Strength in Laser Aided Additive Manufacturing of Ti−6Al−4V Alloy by Trace Ni Addition.” Virtual and Physical Prototyping 16: 417–427. doi:10.1080/17452759.2021.1949091
  • Tan, Q., Y. Liu, Z. Fan, J. Zhang, Y. Yin, and M.-X. Zhang. 2020. “Effect of Processing Parameters on the Densification of an Additively Manufactured 2024 Al Alloy.” Journal of Materials Science & Technology 58: 34–45. doi:10.1016/j.jmst.2020.03.070.
  • Toker, G. P., M. Nematollahi, S. E. Saghaian, K. S. Baghbaderani, O. Benafan, M. Elahinia, and H. E. Karaca. 2020. “Shape Memory Behavior of NiTiHf Alloys Fabricated by Selective Laser Melting.” Scripta Materialia 178: 361–365. doi:10.1016/j.scriptamat.2019.11.056.
  • Wang, X., S. Kustov, K. Li, D. Schryvers, B. Verlinden, and J. Van Humbeeck. 2015. “Effect of Nanoprecipitates on the Transformation Behavior and Functional Properties of a Ti–50.8at.% Ni Alloy with Micron-Sized Grains.” Acta Materialia 82: 224–233. doi:10.1016/j.actamat.2014.09.018.
  • Wang, X., S. Kustov, and J. Van Humbeeck. 2018. “A Short Review on the Microstructure, Transformation Behavior and Functional Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting.” Materials 11: 1683. doi:10.3390/ma11091683.
  • Wang, X., Z. Pu, Q. Yang, S. Huang, Z. Wang, S. Kustov, and J. Van Humbeeck. 2019. “Improved Functional Stability of a Coarse-Grained Ti-50.8 at.% Ni Shape Memory Alloy Achieved by Precipitation on Dislocation Networks.” Scripta Materialia 163: 57–61. doi:10.1016/j.scriptamat.2019.01.006.
  • Wang, X., J. Yu, J. Liu, L. Chen, Q. Yang, H. Wei, J. Sun, et al. 2020. “Effect of Process Parameters on the Phase Transformation Behavior and Tensile Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting.” Additive Manufacturing 36: 101545. doi:10.1016/j.addma.2020.101545.
  • Wang, Z., X. Lin, N. Kang, J. Chen, H. Tan, Z. Feng, Z. Qin, H. Yang, and W. Huang. 2021. “Laser Powder bed Fusion of High-Strength Sc/Zr-Modified Al–Mg Alloy: Phase Selection, Microstructural/Mechanical Heterogeneity, and Tensile Deformation Behavior.” Journal of Materials Science & Technology 95: 40–56. doi:10.1016/j.jmst.2021.03.069.
  • Wei, C., and L. Li. 2021. “Recent Progress and Scientific Challenges in Multi-Material Additive Manufacturing via Laser-Based Powder bed Fusion.” Virtual and Physical Prototyping 16: 347–371. doi:10.1080/17452759.2021.1928520.
  • Wei, H. L., J. Mazumder, and T. DebRoy. 2015. “Evolution of Solidification Texture During Additive Manufacturing.” Scientific Reports 5: 16446. doi:10.1038/srep16446.
  • Weinert, K., and V. Petzoldt. 2004. “Machining of NiTi Based Shape Memory Alloys.” Materials Science and Engineering A 378: 180–184. doi:10.1016/j.msea.2003.10.344.
  • Xiong, Z., Z. Li, Z. Sun, S. Hao, Y. Yang, M. Li, C. Song, P. Qiu, and L. Cui. 2019. “Selective Laser Melting of NiTi Alloy with Superior Tensile Property and Shape Memory Effect.” Journal of Materials Science & Technology 35: 2238–2242. doi:10.1016/j.jmst.2019.05.015.
  • Xu, H., C. Jiang, S. Gong, and G. Feng. 2000. “Martensitic Transformation of the Ti50Ni48Fe2 Alloy Deformed at Different Temperatures.” Materials Science and Engineering A 281: 234–238. doi:10.1016/S0921-5093(99)00722-4.
  • Xue, L., K. C. Atli, S. Picak, C. Zhang, B. Zhang, A. Elwany, R. Arroyave, and I. Karaman. 2021. “Controlling Martensitic Transformation Characteristics in Defect-Free NiTi Shape Memory Alloys Fabricated Using Laser Powder bed Fusion and a Process Optimization Framework.” Acta Materialia 215: 117017. doi:10.1016/j.actamat.2021.117017.
  • Xue, L., K. C. Atli, C. Zhang, N. Hite, A. Srivastava, A. Leff, A. Wilson, et al. 2022. “Laser Powder bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Tensile Superelasticity.” Acta Materialia 229: 117781. doi:10.1016/j.actamat.2022.117781.
  • Yang, Y., J. B. Zhan, Z. Z. Sun, H. L. Wang, J. X. Lin, Y. J. Liuand L, and C. Zhang. 2019. “Evolution of Functional Properties Realized by Increasing Laser Scanning Speed for the Selective Laser Melting Fabricated NiTi Alloy.” Journal of Alloys and Compounds 804: 220–229. doi:10.1016/j.jallcom.2019.06.340.
  • Yao, L., S. Huang, U. Ramamurty, and Z. Xiao. 2021. “On the Formation of “Fish-Scale” Morphology with Curved Grain Interfacial Microstructures During Selective Laser Melting of Dissimilar Alloys.” Acta Materialia 220: 117331. doi:10.1016/j.actamat.2021.117331.
  • Zhang, C. C., H. L. Wei, T. T. Liu, L. Y. Jiang, T. Yang, and W. H. Liao. 2021a. “Influences of Residual Stress and Micro-Deformation on Microstructures and Mechanical Properties for Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy Produced by Laser Powder bed Fusion.” Journal of Materials Science & Technology 75: 174–183. doi:10.1016/j.jmst.2020.08.061.
  • Zhang, D., D. Qiu, M. A. Gibson, Y. Zheng, H. L. Fraser, D. H. StJohn, and M. A. Easton. 2019. “Additive Manufacturing of Ultrafine-Grained High-Strength Titanium Alloys.” Nature 576: 91–95. doi:10.1038/s41586-019-1783-1.
  • Zhang, Q., S. Hao, Y. Liu, Z. Xiong, W. Guo, Y. Yang, Y. Ren, L. Cui, L. Ren, and Z. Zhang. 2020. “The Microstructure of a Selective Laser Melting (SLM)-Fabricated NiTi Shape Memory Alloy with Superior Tensile Property and Shape Memory Recoverability.” Applied Materials Today 19: 100547. doi:10.1016/j.apmt.2019.100547.
  • Zhang, T., Z. Huang, T. Yang, H. Kong, J. Luan, A. Wang, D. Wang, W. Kuo, Y. Wang, and C. Liu. 2021b. “In Situ Design of Advanced Titanium Alloy with Concentration Modulations by Additive Manufacturing.” Science 374: 478–482. doi:10.1126/science.abj3770.
  • Zhang, Y., S. Jiang, M. Tang, B. Yan, J. Yu, and C. Zhao. 2021c. “Mechanisms for Influence of Post-Deformation Annealing on Microstructure of NiTiFe Shape Memory Alloy Processed by Local Canning Compression.” Journal of Materials Processing Technology 291: 116998. doi:10.1016/j.jmatprotec.2020.116998.
  • Zhang, Y., S. Jiang, X. Zhu, Y. Zhao, Y. Liang, and D. Sun. 2017. “Influence of Fe Addition on Phase Transformation Behavior of NiTi Shape Memory Alloy.” Transactions of Nonferrous Metals Society of China 27: 1580–1587. doi:10.1016/s1003-6326(17)60179-1.
  • Zhao, C., N. D. Parab, X. Li, K. Fezzaa, W. Tan, A. D. Rollett, and T. Sun. 2020. “Critical Instability at Moving Keyhole tip Generates Porosity in Laser Melting.” Science 370: 1080–1086. doi:10.1126/science.abd1587.
  • Zheng, Y. F., B. B. Zhang, B. L. Wang, Y. B. Wang, L. Li, Q. B. Yang, and L. S. Cui. 2011. “Introduction of Antibacterial Function Into Biomedical TiNi Shape Memory Alloy by the Addition of Element Ag.” Acta Biomaterialia 7: 2758–2767. doi:10.1016/j.actbio.2011.02.010.