1,841
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Origin of deposition errors and layer-wise control strategies during laser additive manufacturing

, , , , , & show all
Article: e2173615 | Received 15 Nov 2022, Accepted 24 Jan 2023, Published online: 15 Feb 2023

References

  • Abe, Takeyuki, Jun’ichi Kaneko, and Hiroyuki Sasahara. 2020. “Thermal Sensing and Heat Input Control for Thin-Walled Structure Building Based on Numerical Simulation for Wire and Arc Additive Manufacturing.” Additive Manufacturing 35: 101357. doi:10.1016/j.addma.2020.101357.
  • Bayat, Mohamad, Wen Dong, Jesper Thorborg, Albert C. To, and Jesper H. Hattel. 2021. “A Review of Multi-Scale and Multi-Physics Simulations of Metal Additive Manufacturing Processes with Focus on Modeling Strategies.” Additive Manufacturing 47: 102278. doi:10.1016/j.addma.2021.102278.
  • Bayat, Mohamad, Venkata K. Nadimpalli, Francesco G. Biondani, Sina Jafarzadeh, Jesper Thorborg, Niels S. Tiedje, Giuliano Bissacco, David B. Pedersen, and Jesper H. Hattel. 2021. “On the Role of the Powder Stream on the Heat and Fluid Flow Conditions During Directed Energy Deposition of Maraging Steel—Multiphysics Modeling and Experimental Validation.” Additive Manufacturing 43: 102021. doi:10.1016/j.addma.2021.102021.
  • Bermingham, M. J., D. H. StJohn, J. Krynen, S. Tedman-Jones, and M. S. Dargusch. 2019. “Promoting the Columnar to Equiaxed Transition and Grain Refinement of Titanium Alloys During Additive Manufacturing.” Acta Materialia 168: 261–274. doi:10.1016/j.actamat.2019.02.020.
  • Cao, Y., H. L. Wei, T. Yang, T. T. Liu, and W. H. Liao. 2021. “Printability Assessment with Porosity and Solidification Cracking Susceptibilities for a High Strength Aluminum Alloy During Laser Powder Bed Fusion.” Additive Manufacturing 46: 102103. doi:10.1016/j.addma.2021.102103.
  • Carroll, Beth E., Todd A. Palmer, and Allison M. Beese. 2015. “Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated with Directed Energy Deposition Additive Manufacturing.” Acta Materialia 87: 309–320. doi:10.1016/j.actamat.2014.12.054.
  • Chen, Yunhui, Samuel J. Clark, David M. Collins, Sebastian Marussi, Simon A. Hunt, Danielle M. Fenech, Thomas Connolley, et al. 2021. “Correlative Synchrotron X-ray Imaging and Diffraction of Directed Energy Deposition Additive Manufacturing.” Acta Materialia 209: 116777. doi:10.1016/j.actamat.2021.116777.
  • Chen, Yunhui, Samuel J. Clark, Lorna Sinclair, Chu Lun Alex Leung, Sebastian Marussi, Thomas Connolley, Robert C. Atwood, et al. 2021. “Synchrotron X-ray Imaging of Directed Energy Deposition Additive Manufacturing of Titanium Alloy Ti-6242.” Additive Manufacturing 41: 101969. doi:10.1016/j.addma.2021.101969.
  • Cunningham, Ross, Cang Zhao, Niranjan Parab, Christopher Kantzos, Joseph Pauza, Kamel Fezzaa, Tao Sun, and Anthony D Rollett. 2019. “Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-ray Imaging.” Science 363 (6429): 849–852. doi:10.1126/science.aav4687.
  • DebRoy, T., and S. A. David. 1995. “Physical Processes in Fusion Welding.” Reviews Of Modern Physics 67 (1): 85–112. doi:10.1103/RevModPhys.67.85.
  • DebRoy, T., T. Mukherjee, H. L. Wei, J. W. Elmer, and J. O. Milewski. 2021. “Metallurgy, Mechanistic Models and Machine Learning in Metal Printing.” Nature Reviews Materials 6 (1): 48–68. doi:10.1038/s41578-020-00236-1.
  • DebRoy, T., H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang. 2018. “Additive Manufacturing of Metallic Components – Process, Structure and Properties.” Progress in Materials Science 92: 112–224. doi:10.1016/j.pmatsci.2017.10.001.
  • Fan, Wei, Hua Tan, Xin Lin, and Weidong Huang. 2020. “Thermal Analysis of Synchronous Induction-Assisted Laser Deposition of Ti-6Al-4V Using Different Laser-Induction Interaction Modes.” Additive Manufacturing 35: 101267. doi:10.1016/j.addma.2020.101267.
  • Feldhausen, Thomas, Lauren Heinrich, Kyle Saleeby, Alan Burl, Brian Post, Eric MacDonald, Chris Saldana, and Lonnie Love. 2022. “Review of Computer-Aided Manufacturing (CAM) Strategies for Hybrid Directed Energy Deposition.” Additive Manufacturing 56: 102900. doi:10.1016/j.addma.2022.102900.
  • Gu, Heng, and Lin Li. 2019. “Computational Fluid Dynamic Simulation of Gravity and Pressure Effects in Laser Metal Deposition for Potential Additive Manufacturing in Space.” International Journal of Heat and Mass Transfer 140: 51–65. doi:10.1016/j.ijheatmasstransfer.2019.05.081.
  • Gu, D., X. Shi, R. Poprawe, D. L. Bourell, R. Setchi, and J. Zhu. 2021. “Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing.” Science 372 (6545): 1–15. doi:10.1126/science.abg1487.
  • Gunasegaram, D. R., A. B. Murphy, A. Barnard, T. DebRoy, M. J. Matthews, L. Ladani, and D. Gu. 2021. “Towards Developing Multiscale-Multiphysics Models and Their Surrogates for Digital Twins of Metal Additive Manufacturing.” Additive Manufacturing 46: 102089. doi:10.1016/j.addma.2021.102089.
  • Jeon, Ikgeun, Liu Yang, Kwangnam Ryu, and Hoon Sohn. 2021. “Online Melt Pool Depth Estimation During Directed Energy Deposition Using Coaxial Infrared Camera, Laser Line Scanner, and Artificial Neural Network.” Additive Manufacturing 47: 102295. doi:10.1016/j.addma.2021.102295
  • Kouraytem, Nadia, Xuxiao Li, Ross Cunningham, Cang Zhao, Niranjan Parab, Tao Sun, Anthony D. Rollett, Ashley D. Spear, and Wenda Tan. 2019. “Effect of Laser-Matter Interaction on Molten Pool Flow and Keyhole Dynamics.” Physical Review Applied 11: 6. doi:10.1103/PhysRevApplied.11.064054.
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2019. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967.
  • Li, Geng, Kyle Odum, Curtis Yau, Masakazu Soshi, and Kazuo Yamazaki. 2021. “High Productivity Fluence Based Control of Directed Energy Deposition (DED) Part Geometry.” Journal of Manufacturing Processes 65: 407–417. doi:10.1016/j.jmapro.2021.03.028
  • Liang, Xuan, Wen Dong, Shawn Hinnebusch, Qian Chen, Hai T. Tran, John Lemon, Lin Cheng, Zekai Zhou, Devlin Hayduke, and Albert C. To. 2020. “Inherent Strain Homogenization for Fast Residual Deformation Simulation of Thin-Walled Lattice Support Structures Built by Laser Powder bed Fusion Additive Manufacturing.” Additive Manufacturing 32: 101091. doi:10.1016/j.addma.2020.101091.
  • Liao, Shuheng, Samantha Webster, Dean Huang, Raymonde Council, Kornel Ehmann, and Jian Cao. 2022. “Simulation-Guided Variable Laser Power Design for Melt Pool Depth Control in Directed Energy Deposition.” Additive Manufacturing 56: 102912. doi:10.1016/j.addma.2022.102912.
  • Liu, F. Q., L. Wei, S. Q. Shi, and H. L. Wei. 2020. “On the Varieties of Build Features During Multi-Layer Laser Directed Energy Deposition.” Additive Manufacturing 36: 101491. doi:10.1016/j.addma.2020.101491.
  • Machirori, T., F. Q. Liu, Q. Y. Yin, and H. L. Wei. 2021. “Spatiotemporal Variations of Residual Stresses During Multi-Track and Multi-Layer Deposition for Laser Powder bed Fusion of Ti-6Al-4V.” Computational Materials Science 195: 110462. doi:10.1016/j.commatsci.2021.110462.
  • Malakizadi, Amir, Dinesh Mallipeddi, Sasan Dadbakhsh, Rachid M'Saoubi, and Peter Krajnik. 2022. “Post-Processing of Additively Manufactured Metallic Alloys – A Review.” International Journal of Machine Tools and Manufacture 179, 103908. doi:10.1016/j.ijmachtools.2022.103908.
  • McCann, Ronan, Muhannad A. Obeidi, Cian Hughes, Éanna McCarthy, Darragh S. Egan, Rajani K. Vijayaraghavan, Ajey M. Joshi, et al. 2021. “In-situ Sensing, Process Monitoring and Machine Control in Laser Powder Bed Fusion: A Review.” Additive Manufacturing 45: 102058. doi:10.1016/j.addma.2021.102058.
  • Mi, Jiqian, Yikai Zhang, Hui Li, Shengnan Shen, Yongqiang Yang, Changhui Song, Xin Zhou, Yucong Duan, Junwen Lu, and Haibo Mai. 2021. “In-situ Monitoring Laser Based Directed Energy Deposition Process with Deep Convolutional Neural Network.” Journal of Intelligent Manufacturing, 34: 683–693. doi:10.1007/s10845-021-01820-0.
  • Mukherjee, T., T. DebRoy, T. J. Lienert, S. A. Maloy, and P. Hosemann. 2021. “Spatial and Temporal Variation of Hardness of a Printed Steel Part.” Acta Materialia 209: 116775. doi:10.1016/j.actamat.2021.116775.
  • Näsström, Jonas, Frank Brückner, and Alexander FH Kaplan. 2018. “Measuring the Effects of a Laser Beam on Melt Pool Fluctuation in arc Additive Manufacturing.” Rapid Prototyping Journal 25(3): 488–495. doi:10.1108/RPJ-01-2018-0033.
  • Ogino, Y., S. Asai, and Y. Hirata. 2018. “Numerical Simulation of WAAM Process by a GMAW Weld Pool Model.” Welding in the World 62 (2): 393–401. doi:10.1007/s40194-018-0556-z.
  • Ortega, Arturo Gomez, Luis Corona Galvan, Mehdi Salem, Kamel Moussaoui, Stephane Segonds, Sébastien Rouquette, and Frédéric Deschaux-Beaume. 2019. “Characterisation of 4043 Aluminium Alloy Deposits Obtained by Wire and Arc Additive Manufacturing Using a Cold Metal Transfer Process.” Science and Technology Of Welding and Joining 24 (6): 538–547. doi:10.1080/13621718.2018.1564986.
  • Ren, K., Y. Chew, N. Liu, Y. F. Zhang, J. Y. H. Fuh, and G. J. Bi. 2021. “Integrated Numerical Modelling and Deep Learning for Multi-Layer Cube Deposition Planning in Laser Aided Additive Manufacturing.” Virtual and Physical Prototyping 16 (3): 318–332. doi:10.1080/17452759.2021.1922714.
  • Shin, Yung C., Neil Bailey, Christopher Katinas, and Wenda Tan. 2018. “Predictive Modeling Capabilities from Incident Powder and Laser to Mechanical Properties for Laser Directed Energy Deposition.” Computational Mechanics 61 (5): 617–636. doi:10.1007/s00466-018-1545-1.
  • Sinclair, Lorna, Samuel J. Clark, Yunhui Chen, Sebastian Marussi, Saurabh Shah, Oxana V. Magdysyuk, Robert C. Atwood, et al. 2022. “Sinter Formation During Directed Energy Deposition of Titanium Alloy Powders.” International Journal of Machine Tools and Manufacture 176: 103887. doi:10.1016/j.ijmachtools.2022.103887.
  • Spranger, Felix, Benjamin Graf, Michael Schuch, Kai Hilgenberg, and Michael Rethmeier. 2018. “Build-up Strategies for Additive Manufacturing of Three Dimensional Ti-6Al-4V-Parts Produced by Laser Metal Deposition.” Journal of Laser Applications 30 (2): 022001. doi:10.2351/1.4997852.
  • Sun, Zhe, Wei Guo, and Lin Li. 2020. “Numerical Modelling of Heat Transfer, Mass Transport and Microstructure Formation in a High Deposition Rate Laser Directed Energy Deposition Process.” Additive Manufacturing 33: 101175. doi:10.1016/j.addma.2020.101175.
  • Svetlizky, D., M. Das, B. L. Zheng, A. L. Vyatskikh, S. Bose, A. Bandyopadhyay, J. M. Schoenung, E. J. Lavernia, and N. Eliaz. 2021. “Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications.” Materials Today 49: 271–295. doi:10.1016/j.mattod.2021.03.020.
  • Wang, T., Y. Y. Zhu, S. Q. Zhang, H. B. Tang, and H. M. Wang. 2015. “Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing.” Journal Of Alloys and Compounds 632: 505–513. doi:10.1016/j.jallcom.2015.01.256.
  • Wei, H. L., Y. Cao, W. H. Liao, and T. T. Liu. 2020. “Mechanisms on Inter-Track Void Formation and Phase Transformation During Laser Powder Bed Fusion of Ti-6Al-4V.” Additive Manufacturing 34: 101221. doi:10.1016/j.addma.2020.101221.
  • Wei, H. L., J. W. Elmer, and T. DebRoy. 2016. “Origin of Grain Orientation During Solidification of an Aluminum Alloy.” Acta Materialia 115: 123–131. doi:10.1016/j.actamat.2016.05.057.
  • Wei, H. L., J. W. Elmer, and T. DebRoy. 2017. “Three-dimensional Modeling of Grain Structure Evolution During Welding of an Aluminum Alloy.” Acta Materialia 126: 413–425. doi:10.1016/j.actamat.2016.12.073.
  • Wei, H. L., G. L. Knapp, T. Mukherjee, and T. DebRoy. 2019. “Three-dimensional Grain Growth During Multi-Layer Printing of a Nickel-Based Alloy Inconel 718.” Additive Manufacturing 25: 448–459. doi:10.1016/j.addma.2018.11.028.
  • Wei, H. L., F. Q. Liu, W. H. Liao, and T. T. Liu. 2020. “Prediction of Spatiotemporal Variations of Deposit Profiles and Inter-Track Voids During Laser Directed Energy Deposition.” Additive Manufacturing 34: 101219. doi:10.1016/j.addma.2020.101219.
  • Wei, H. L., F. Q. Liu, L. Wei, T. T. Liu, and W. H. Liao. 2021. “Multiscale and Multiphysics Explorations of the Transient Deposition Processes and Additive Characteristics During Laser 3D Printing.” Journal of Materials Science & Technology 77: 196–208. doi:10.1016/j.jmst.2020.11.032.
  • Wei, H. L., T. Mukherjee, W. Zhang, J. S. Zuback, G. L. Knapp, A. De, and T. DebRoy. 2021. “Mechanistic Models for Additive Manufacturing of Metallic Components.” Progress in Materials Science 116: 100703. doi:10.1016/j.pmatsci.2020.100703.
  • Wei, H. L., S. Pal, V. Manvatkar, T. J. Lienert, and T. DebRoy. 2015. “Asymmetry in Steel Welds with Dissimilar Amounts of Sulfur.” Scripta Materialia 108: 88–91. doi:10.1016/j.scriptamat.2015.06.024.
  • Weng, Fei, Shiming Gao, Jingchao Jiang, JianJian Wang, and Ping Guo. 2019. “A Novel Strategy to Fabricate Thin 316L Stainless Steel Rods by Continuous Directed Energy Deposition in Z Direction.” Additive Manufacturing 27: 474–481. doi:10.1016/j.addma.2019.03.024.
  • Wolff, Sarah J., Zhengtao Gan, Stephen Lin, Jennifer L. Bennett, Wentao Yan, Gregory Hyatt, Kornel F. Ehmann, Gregory J. Wagner, Wing Kam Liu, and Jian Cao. 2019. “Experimentally Validated Predictions of Thermal History and Microhardness in Laser-Deposited Inconel 718 on Carbon Steel.” Additive Manufacturing 27: 540–551. doi:10.1016/j.addma.2019.03.019.
  • Wolff, Sarah J., Hui Wang, Benjamin Gould, Niranjan Parab, Ziheng Wu, Cang Zhao, Aaron Greco, and Tao Sun. 2021. “In Situ X-ray Imaging of Pore Formation Mechanisms and Dynamics in Laser Powder-Blown Directed Energy Deposition Additive Manufacturing.” International Journal of Machine Tools and Manufacture 166: 103743. doi:10.1016/j.ijmachtools.2021.103743.
  • Wu, Jiazhu, Song Ren, Yi Zhang, Yang Cao, Dabin Zhang, and Cunhong Yin. 2021. “Influence of Spatial Laser Beam Profiles on Thermal-Fluid Transport During Laser-Based Directed Energy Deposition.” Virtual and Physical Prototyping 16 (4): 444–459. doi:10.1080/17452759.2021.1960734.
  • Zhang, Bin, Shunyu Liu, and Yung C. Shin. 2019. “In-Process Monitoring of Porosity During Laser Additive Manufacturing Process.” Additive Manufacturing 28: 497–505. doi:10.1016/j.addma.2019.05.030.
  • Zhang, Ziyang, Zhichao Liu, and Dazhong Wu. 2021. “Prediction of Melt Pool Temperature in Directed Energy Deposition Using Machine Learning.” Additive Manufacturing 37: 101692. doi:10.1016/j.addma.2020.101692.
  • Zhao, Cang, Bo Shi, Shuailei Chen, Dong Du, Tao Sun, Brian J. Simonds, Kamel Fezzaa, and Anthony D. Rollett. 2022. “Laser Melting Modes in Metal Powder Bed Fusion Additive Manufacturing.” Reviews Of Modern Physics 94 (4). doi:10.1103/RevModPhys.94.045002.
  • Zhao, Tong, Yuhan Wang, Tianshan Xu, Maha Bakir, Wangcan Cai, Mengjie Wang, Marius Dahmen, et al. 2021. “Some Factors Affecting Porosity in Directed Energy Deposition of AlMgScZr-Alloys.” Optics & Laser Technology 143: 107337. doi:10.1016/j.optlastec.2021.107337.
  • Zhao, M. Z., H. L. Wei, Y. M. Mao, C. D. Zhang, T. T. Liu, and W. H. Liao. 2022. “Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with Physics-Informed Deep Learning Model.” Engineering. In press.