1,841
Views
2
CrossRef citations to date
0
Altmetric
Research Article

4D printed thermally tunable metasurface with continuous carbon fibre

ORCID Icon, , , , , , & show all
Article: e2224298 | Received 10 Apr 2023, Accepted 06 Jun 2023, Published online: 20 Jun 2023

References

  • Bai, Yisong, Chuanbao Liu, Yang Li, Jinxu Li, Lijie Qiao, Ji Zhou, and Yang Bai. 2022. “Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.” Acs Applied Materials & Interfaces 14 (31): 35905–35916. https://doi.org/10.1021/acsami.2c08270.
  • Beaman, R. G. 1965. “Correlation and Prediction of Polyamide Glass Transitions.” Journal of Applied Polymer Science 9 (12): 3949–3952. https://doi.org/10.1002/app.1965.070091217.
  • Chen, Y., and Q. H. He. 2020. “3D-Printed Short Carbon Fibre Reinforced Perforated Structures with Negative Poisson's Ratios: Mechanisms and Design.” Composite Structures 236. https://doi.org/10.1016/j.compstruct.2020.111859.
  • Chen, Fangqi, Xiaojie Liu, Yanpei Tian, Yang Liu, and Yi Zheng. 2021. “Self-Adaptive Near-Field Radiative Thermal Modulation Using a Thermally Sensitive Bimaterial Structure.” Applied Physics Letters 119: 22. https://doi.org/10.1063/5.0073865.
  • Chen, J. Y., X. J. Liu, Y. J. Tian, W. Zhu, C. Z. Yan, Y. S. Shi, L. B. Kong, H. J. Qi, and K. Zhou. 2022. “3D-Printed Anisotropic Polymer Materials for Functional Applications.” Advanced Materials 34: 5. https://doi.org/10.1002/adma.202102877.
  • Fan, Xuanqing, Yuhang Li, Sihong Chen, Yufeng Xing, and Taisong Pan. 2020. “Mechanical Terahertz Modulation by Skin-Like Ultrathin Stretchable Metasurface.” Small 16: 37. https://doi.org/10.1002/smll.202002484.
  • Goh, G. D., W. Toh, Y. L. Yap, T. Y. Ng, and W. Y. Yeong. 2021. “Additively Manufactured Continuous Carbon Fiber-Reinforced Thermoplastic for Topology Optimized Unmanned Aerial Vehicle Structures.” Composites Part B-Engineering 216. https://doi.org/10.1016/j.compositesb.2021.108840.
  • Gu, Dongdong. 2022. “Material-Structure Integrated Additive Manufacturing: Not Simple Accumulation, But Real Integration.” In 100059. Elsevier.
  • Gu, D. D., X. Y. Shi, R. Poprawe, D. L. Bourell, R. Setchi, and J. H. Zhu. 2021. “Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing.” Science 372 (6545): 932-+. https://doi.org/10.1126/science.abg1487.
  • Guo, J., G. Q. Xu, D. Tian, Z. G. Qu, and C. W. Qiu. 2022. “A Real-Time Self-Adaptive Thermal Metasurface.” Advanced Materials 34: 24. https://doi.org/10.1002/adma.202201093.
  • Han, Z. T., X. Y. J. Xiao, J. X. Chen, K. Wei, Z. G. Wang, X. J. Yang, and D. N. Fang. 2022. “Bifunctional Metamaterials Incorporating Unusual Geminations of Poisson's Ratio and Coefficient of Thermal Expansion.” Acs Applied Materials & Interfaces 14 (44): 50068–50078. https://doi.org/10.1021/acsami.2c11702.
  • Hu, Fangrong, Ningning Xu, Weiming Wang, Yue'e Wang, Wentao Zhang, Jiaguang Han, and Weili Zhang. 2016. “A Dynamically Tunable Terahertz Metamaterial Absorber Based on an Electrostatic MEMS Actuator and Electrical Dipole Resonator Array.” Journal of Micromechanics and Microengineering 26: 2. https://doi.org/10.1088/0960-1317/26/2/025006.
  • Huang, Jingxiang, Minghui Fu, and Binbin Zheng. 2022. “"Elastic Mechanics Solution of Thermal Expansion of Bi-Material Curved Beam and Its Application to Negative Thermal Expansion Metamaterials.” Scientific Reports 12 (1): 11755. https://doi.org/10.1038/s41598-022-16036-2.
  • Iragi, M., C. Pascual-Gonzalez, A. Esnaola, C. S. Lopes, and L. Aretxabaleta. 2019. “Ply and Interlaminar Behaviours of 3D Printed Continuous Carbon Fibre-Reinforced Thermoplastic Laminates; Effects Of Processing Conditions and Microstructure.” Additive Manufacturing 30. https://doi.org/10.1016/j.addma.2019.100884.
  • Jia, N. Y., V. A. Kagan Spe, and Spe. 2000. “Mechanical Performance of Polyamides with Influence of Moisture and Temperature - Accurate Evaluation and Better Understanding.” Paper presented at the 58th Annual Technical Conference of the Society-of-Plastics-Engineers, Orlando, FL, May 07-11.
  • Lakes, R. 1996. “Cellular Solid Structures with Unbounded Thermal Expansion.” Journal of Materials Science Letters 15 (6): 475–477. https://doi.org/10.1007/BF00275406.
  • Lewi, T., N. A. Butakov, and J. A. Schuller. 2019. “Thermal Tuning Capabilities of Semiconductor Metasurface Resonators.” Nanophotonics 8 (2): 331–338. https://doi.org/10.1515/nanoph-2018-0178.
  • Liu, Y. J., H. L. Yang, X. J. Huang, Z. T. Yu, S. R. Li, and Y. J. Yang. 2021. “A Metamaterial Polarization Converter with Half Reflection and Half Transmission Simultaneously.” Physics Letters A 389. https://doi.org/10.1016/j.physleta.2020.127101.
  • Lor, C., R. Phon, M. Lee, and S. Lim. 2022. “Multi-Functional Thermal-Mechanical Anisotropic Metasurface with Shape Memory Alloy Actuators.” Materials & Design 216. https://doi.org/10.1016/j.matdes.2022.110569.
  • Ma, Ruizhe, Lu Liu, Omar Wyman, and Damiano Pasini. 2022. “Programming Polymorphable yet Stiff Truss Metamaterials in Response to Temperature.” Applied Materials Today 27. https://doi.org/10.1016/j.apmt.2022.101432.
  • Mizukami, K., K. Funaba, and K. Ogi. 2021. “Design and Three-Dimensional Printing of Carbon-Fiber-Composite Elastic Metamaterials with Inertial Amplification Mechanisms.” Journal of Sound and Vibration 513. https://doi.org/10.1016/j.jsv.2021.116412.
  • Mizukami, K., T. Kawaguchi, K. Ogi, and Y. Koga. 2021. “Three-Dimensional Printing of Locally Resonant Carbon-Fiber Composite Metastructures for Attenuation of Broadband Vibration.” Composite Structures 255. https://doi.org/10.1016/j.compstruct.2020.112949.
  • Ni, Xiaoyue, Xiaogang Guo, Jiahong Li, Yonggang Huang, Yihui Zhang, and John A. Rogers. 2019. “2D Mechanical Metamaterials with Widely Tunable Unusual Modes of Thermal Expansion.” Advanced Materials 31: 48. https://doi.org/10.1002/adma.201905405.
  • Qu, Jingyuan, Muamer Kadic, Andreas Naber, and Martin Wegener. 2017. “"Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents.” Scientific Reports 7. https://doi.org/10.1038/srep40643.
  • Rahmani, M., L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zarate, et al. 2017. “Reversible Thermal Tuning of All-Dielectric Metasurfaces.” Advanced Functional Materials 27 (31). https://doi.org/10.1002/adfm.201700580.
  • Ren, Zhihao, Yuhua Chang, Yiming Ma, Kailing Shih, Bowei Dong, and Chengkuo Lee. 2020. “Leveraging of MEMS Technologies for Optical Metamaterials Applications.” Advanced Optical Materials 8 (3). https://doi.org/10.1002/adom.201900653.
  • Saeed, K., A. McIlhagger, E. Harkin-Jones, J. Kelly, and E. Archer. 2021. “Predication of the In-Plane Mechanical Properties of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites Using Classical Laminated-Plate Theory.” Composite Structures 259. https://doi.org/10.1016/j.compstruct.2020.113226.
  • Somireddy, M., and A. Czekanski. 2020. “Anisotropic Material Behavior of 3D Printed Composite Structures - Material Extrusion Additive Manufacturing.” Materials & Design 195. https://doi.org/10.1016/j.matdes.2020.108953.
  • Stephen, L., N. Yogesh, and V. Subramanian. 2018. “Broadband Asymmetric Transmission of Linearly Polarized Electromagnetic Waves Based on Chiral Metamaterial.” Journal of Applied Physics 123 (3): 3. https://doi.org/10.1063/1.5008614.
  • Surjadi, J. U., L. B. Gao, H. F. Du, X. Li, X. Xiong, N. X. Fang, and Y. Lu. 2019. “Mechanical Metamaterials and Their Engineering Applications.” Advanced Engineering Materials 21 (3): 3. https://doi.org/10.1002/adem.201800864.
  • Tian, Xiaoyong, Akira Todoroki, Tengfei Liu, Lingling Wu, Zhanghao Hou, Masahiro Ueda, Yoshiyasu Hirano, Ryosuke Matsuzaki, Koichi Mizukami, and Keisuke Iizuka. 2022. “3d Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective.” Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers: 100016. https://doi.org/10.1016/j.cjmeam.2022.100016
  • Tibbits, S. 2014. “4D Printing: Multi-Material Shape Change.” Architectural Design 84 (1): 116–121. https://doi.org/10.1002/ad.1710.
  • Toropova, M. M., and C. A. Steeves. 2015. “Adaptive Bimaterial Lattices to Mitigate Thermal Expansion Mismatch Stresses in Satellite Structures.” Acta Astronautica 113: 132–141. https://doi.org/10.1016/j.actaastro.2015.03.022.
  • Wang, K. Y., J. X. Chen, Z. T. Han, K. Wei, X. J. Yang, Z. G. Wang, and D. N. Fang. 2022. “Synergistically Program Thermal Expansional and Mechanical Performances in 3D Metamaterials: Design-Architecture-Performance.” Journal of the Mechanics and Physics of Solids 169. https://doi.org/10.1016/j.jmps.2022.105064.
  • Wang, Zhonggang, Zichao Guo, Zhendong Li, and Kexin Zeng. 2023. “Design, Manufacture, and Characterisation of Hierarchical Metamaterials for Simultaneous Ultra-Broadband Sound-Absorbing and Superior Mechanical Performance.” Virtual and Physical Prototyping 18 (1): e2111585. https://doi.org/10.1080/17452759.2022.2111585
  • Wang, Qiming, Julie A. Jackson, Qi Ge, Jonathan B. Hopkins, Christopher M. Spadaccini, and Nicholas X. Fang. 2016. “Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion.” Physical Review Letters 117: 17. https://doi.org/10.1103/PhysRevLett.117.175901.
  • Wang, Qingrui, Xiaoyong Tian, Lan Huang, Dichen Li, Andrei V. Malakhov, and Alexander N. Polilov. 2018. “Programmable Morphing Composites with Embedded Continuous Fibers by 4D Printing.” Materials & Design 155: 404–413. https://doi.org/10.1016/j.matdes.2018.06.027.
  • Wei, K., H. S. Chen, Y. M. Pei, and D. N. Fang. 2016. “Planar Lattices with Tailorable Coefficient of Thermal Expansion and High Stiffness Based on Dual-Material Triangle Unit.” Journal of the Mechanics and Physics of Solids 86: 173–191. https://doi.org/10.1016/j.jmps.2015.10.004.
  • Wei, K., Y. Peng, Z. L. Qu, Y. M. Pei, and D. N. Fang. 2018a. “A Cellular Metastructure Incorporating Coupled Negative Thermal Expansion and Negative Poisson's Ratio.” International Journal of Solids and Structures 150: 255–267. https://doi.org/10.1016/j.ijsolstr.2018.06.018.
  • Wei, K., Y. Peng, K. Y. Wang, S. Y. Duan, X. J. Yang, and W. B. Wen. 2018. “Three Dimensional Lightweight Lattice Structures with Large Positive: Zero and Negative Thermal Expansion.” Composite Structures 188: 287–296. https://doi.org/10.1016/j.compstruct.2018.01.030.
  • Wei, Kai, Xiaoyujie Xiao, Jiaxin Chen, Yazhuo Wu, Maojun Li, and Zhonggang Wang. 2021a. “Additively Manufactured Bi-Material Metamaterial to Program a Wide Range of Thermal Expansion.” Materials & Design 198. https://doi.org/10.1016/j.matdes.2020.109343.
  • Wei, K., X. Y. J. Xiao, W. T. Xu, Z. T. Han, Y. Z. Wu, and Z. G. Wang. 2021. “Large Programmable Coefficient of Thermal Expansion in Additively Manufactured Bi-Material Mechanical Metamaterial.” Virtual and Physical Prototyping 16 (sup1): S53–S65. https://doi.org/10.1080/17452759.2021.1917295.
  • Wu, Wenwang, Wenxia Hu, Guian Qian, Haitao Liao, Xiaoying Xu, and Filippo Berto. 2019. “Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review.” Materials & Design 180. https://doi.org/10.1016/j.matdes.2019.107950.
  • Wu, Lingling, Zirui Zhai, Xinguang Zhao, Xiaoyong Tian, Dichen Li, Qianxuan Wang, and Hanqing Jiang. 2022. “Modular Design for Acoustic Metamaterials: Low-Frequency Noise Attenuation.” Advanced Functional Materials 32: 13. https://doi.org/10.1002/adfm.202105712.
  • Xu, J., D. L. Jia, Y. Liu, Y. Tian, and X. M. Yu. 2020. “Tunable Terahertz Metamaterial Absorber Actuated by Thermomechanical Bimaterial Microcantilevers.” Optics Express 28 (7): 10329–10336. https://doi.org/10.1364/OE.385948.
  • Xu, W. T., X. Y. J. Xiao, J. X. Chen, Z. T. Han, and K. Wei. 2022. “Program Multi-Directional Thermal Expansion in a Series of Bending Dominated Mechanical Metamaterials.” Thin-Walled Structures 174. https://doi.org/10.1016/j.tws.2022.109147.
  • Yamamoto, N., E. Gdoutos, R. Toda, V. White, H. Manohara, and C. Daraio. 2014. “Thin Films with Ultra-low Thermal Expansion.” Advanced Materials 26 (19): 3076–3080. https://doi.org/10.1002/adma.201304997.
  • Yin, Lixian, Xiaoyong Tian, Zhentao Shang, Xin Wang, and Zhanghao Hou. 2019. “Characterizations of Continuous Carbon Fiber-Reinforced Composites for Electromagnetic Interference Shielding Fabricated by 3D Printing.” Applied Physics a-Materials Science & Processing 125 (1): 4. https://doi.org/10.1007/s00339-018-2303-0.
  • Zeng, C. J., L. W. Liu, W. F. Bian, J. S. Leng, and Y. J. Liu. 2022. “Temperature-Dependent Mechanical Response of 4D Printed Composite Lattice Structures Reinforced by Continuous Fiber.” Composite Structures 280. https://doi.org/10.1016/j.compstruct.2021.114952.
  • Zeng, Y., Q. Wu, and D. H. Werner. 2010. “Electrostatic Theory for Designing Lossless Negative Permittivity Metamaterials.” Optics Letters 35 (9): 1431–1433. https://doi.org/10.1364/OL.35.001431.
  • Zheludev, N. I. 2010. “The Road Ahead for Metamaterials.” Science 328 (5978): 582–583. https://doi.org/10.1126/science.1186756.