2,960
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design of a novel crack-free precipitation-strengthened nickel-based superalloy and composites for laser powder bed fusion

, , , , , , , , & show all
Article: e2224769 | Received 12 Apr 2023, Accepted 08 Jun 2023, Published online: 30 Jun 2023

References

  • Birosca, S., F. D. Gioacchino, and S. Stekovic. 2014. “A Quantitative Approach to Study the Effect of Local Texture and heterogeneous Plastic Strain on the Deformation Micromechanism in RR1000 Nickel-based Superalloy.” Acta Materialia 74: 110–124. https://doi.org/10.1016/j.actamat.2014.04.039.
  • Brewer, L. N., D. P. Field, and C. C. Merriman. 2009. “Mapping and Assessing Plastic Deformation Using EBSD.” In Electron Backscatter Diffraction in Materials Science, edited by A. Schwartz, M. Kumar, B. Adams, and D. Field. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-88136-2_18.
  • Cai, Dayong, Pulin Nie, Jiaping Shan, Wenchang Liu, Yukui Gao, and Mei Yao. 2006. “Precipitation and Residual Stress Relaxation Kinetics in Shot-Peened Inconel 718.” Journal of Materials Engineering and Performance 15 (5): 614–617. https://doi.org/10.1361/105994906X124613.
  • Carter, Luke Nelson. 2013. “Selective Laser Melting of Nickel Superalloys for High Temperature Applications.” (PhD dissertation). University of Birmingham.
  • Chauvet, E., P. Kontis, E. Jgle, B. Gault, D. Raabe, C. Tassin, J. J. Blandin, R. Dendievel, B. Vayre, and S. Abed. 2018. “Hot Cracking Mechanism Affecting a non-Weldable Ni-Based Superalloy Produced by Selective Electron Beam Melting.” Acta Materialia 142: 82–94. https://doi.org/10.1016/j.actamat.2017.09.047.
  • Chen, Zhen, Yongxin Lu, Fan Luo, Shuzhe Zhang, Pei Wei, Sen Yao, and Yongxin Wang. 2022. “Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.” Materials 15 (9): 3045. https://doi.org/10.3390/ma15093045.
  • Chen, L., Y. Sun, L. Li, and X. Ren. 2020. “Microstructure Evolution, Mechanical Properties, and Strengthening Mechanism of TiC Reinforced Inconel 625 Nanocomposites Fabricated by Selective Laser Melting.” Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing 792: 792. https://doi.org/10.1016/j.msea.2020.139655.
  • Chen, Lian-Yi, Jia-Quan Xu, Hongseok Choi, Marta Pozuelo, Xiaolong Ma, Sanjit Bhowmick, Jenn-Ming Yang, Suveen Mathaudhu, and Xiao-Chun Li. 2015. “Processing and Properties of Magnesium Containing a Dense Uniform Dispersion of Nanoparticles.” Nature 528 (7583): 539–543. https://doi.org/10.1038/nature16445.
  • Cheng, Xiaopeng, Yanan Zhao, Zhu Qian, Jin Wu, Ji Dong, Zongqing Ma, and Yongchang Liu. 2021. “Crack Elimination and Mechanical Properties Enhancement in Additive Manufactured Hastelloy X via in-Situ Chemical Doping of Y2O3.” Materials Science and Engineering: A 824, https://doi.org/10.1016/j.msea.2021.141867.
  • Deng, D., L. P. Ru, Hakan Brodin, and J. Moverare. 2018. “Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments.” Materials Science and Engineering: A 713 (JAN.24): 294. https://doi.org/10.1016/j.msea.2017.12.043.
  • Ding, Wenhong, Yazheng Liu, Jianxin Xie, Li Sun, Tianwu Liu, Fei Yuan, and Jin Pan. 2019. “Effect of Carbide Precipitation on the Evolution of Residual Stress During Tempering.” Metals 9 (6), https://doi.org/10.3390/met9060709.
  • Donachie, Matthew J, and Stephen J Donachie. 2002. Superalloys: A Technical Guide. ASM International.
  • Dupont, J. N., J. C. Lippold, and S. D. Kiser. 2011. Welding Metallurgy and Weldability of Nickel-Base Alloys. Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley.
  • Fan, Junxiang, Lei Zhang, Shuaishuai Wei, Zhi Zhang, Seung-Kyum Choi, Bo Song, and Yusheng Shi. 2021. “A Review of Additive Manufacturing of Metamaterials and developing Trends.” Materials Today 50: 303–328. https://doi.org/10.1016/j.mattod.2021.04.019.
  • Fang, C. Z., H. C. Basoalto, M. J. Anderson, H. Y. Li, S. J. Williams, and P. Bowen. 2022. “A Numerical Study on the Influence of Grain Boundary Oxides on Dwell Fatigue Crack Growth of a Nickel-based superalloy.” Journal of Materials Science & Technology 104: 224–235. https://doi.org/10.1016/j.jmst.2021.06.045.
  • Furrer, David, and Hans Fecht. 1999. “Ni-based Superalloys for Turbine Discs.” JOM Journal of the Minerals Metals and Materials Society 51 (1): 14–17. https://doi.org/10.1007/s11837-999-0005-y.
  • Gao, Jian, Quanquan Han, Liqiao Wang, Zhongyi Liu, Shwe Soe, Zhenhua Zhang, and Yuchen Gu. 2022. “Laser Powder bed Fusion of TiB2-Modified Cu15Ni8Sn Alloy: Processability, Microstructure and Mechanical Performance.” Materials Science and Engineering: A 855: 143879. https://doi.org/10.1016/j.msea.2022.143879.
  • Goodfellow, A. J. 2018. “Strengthening Mechanisms in Polycrystalline Nickel-Based Superalloys.” Materials Science and Technology 34 (15): 1793–1808. https://doi.org/10.1080/02670836.2018.1461594.
  • Grilli, M. L., T. Bellezze, E. Gamsjager, A. Rinaldi, P. Novak, S. Balos, R. R. Piticescu, and M. L. Ruello. 2017. “Solutions for Critical Raw Materials Under Extreme Conditions: A Review.” Materials 10 (3), https://doi.org/10.3390/ma10030285.
  • Guo, Chuan, Gan Li, Sheng Li, Xiaogang Hu, Hongxing Lu, Xinggang Li, Zhen Xu, et al. 2023. “Additive Manufacturing of Ni-Based Superalloys: Residual Stress, Mechanisms of Crack Formation and Strategies for Crack Inhibition.” Nano Materials Science, https://doi.org/10.1016/j.nanoms.2022.08.001.
  • Haines, Michael P., Vitor V. Rielli, Sophie Primig, and Nima Haghdadi. 2022. “Powder bed Fusion Additive Manufacturing of Ni-Based Superalloys: A Review of the Main Microstructural Constituents and Characterization Techniques.” Journal of Materials Science 57 (30): 14135–14187. https://doi.org/10.1007/s10853-022-07501-4.
  • Han, Quanquan, Yuchen Gu, Heng Gu, Yingyue Yin, Jun Song, Zhenhua Zhang, and Shwe Soe. 2021. “Laser Powder bed Fusion of WC-Reinforced Hastelloy-X Composite: Microstructure and Mechanical Properties.” Journal of Materials Science 56 (2): 1768–1782. https://doi.org/10.1007/s10853-020-05327-6.
  • Han, Quanquan, Yuchen Gu, Jun Huang, Liqiao Wang, Kenny W. Q. Low, Qixiang Feng, Yingyue Yin, and Rossitza Setchi. 2020. “Selective Laser Melting of Hastelloy X Nanocomposite: Effects of TiC Reinforcement on Crack Elimination and Strength Improvement.” Composites Part B: Engineering, https://doi.org/10.1016/j.compositesb.2020.108442.
  • Harte, Allan, Michael Atkinson, Albert Smith, Carsten Drouven, Stefan Zaefferer, João Quinta da Fonseca, and Michael Preuss. 2020. “The Effect of Solid Solution and Gamma Prime on the Deformation Modes in Ni-Based Superalloys.” Acta Materialia 194: 257–275. https://doi.org/10.1016/j.actamat.2020.04.004.
  • He, Chuang, Lin Liu, Taiwen Huang, Wenchao Yang, Xiaojuan Wang, Jun Zhang, Min Guo, and Hengzhi Fu. 2021. “The Effects of Misfit and Diffusivity on γʹ Rafting in Re and Ru Containing Nickel Based Single Crystal Superalloys—Details in Thermodynamics and Dynamics.” Vacuum 183, https://doi.org/10.1016/j.vacuum.2020.109839.
  • Henderson, M. B., D. Arrell, R. Larsson, M. Heobel, and G. Marchant. 2004. “Nickel Based Superalloy Welding Practices for Industrial gas Turbine Applications.” Science and Technology of Welding and Joining 9 (1): 13–21. https://doi.org/10.1179/136217104225017099.
  • Jena, A. K., and M. C. Chaturvedi. 1984. “The Role of Alloying Elements in the Design of Nickel-Base Superalloys.” Journal of Materials Science 19 (10): 3121–3139. https://doi.org/10.1007/BF00549796.
  • Kim, Young-Kyun, Jungho Choe, and Kee-Ahn Lee. 2019. “Selective Laser Melted Equiatomic CoCrFeMnNi High-Entropy Alloy: Microstructure, Anisotropic Mechanical Response, and Multiple Strengthening Mechanism.” Journal of Alloys and Compounds 805: 680–691. https://doi.org/10.1016/j.jallcom.2019.07.106.
  • Konijnenberg, P., S. Zaefferer, and D. Raabe. 2015. “Assessment of Geometrically Necessary Dislocation Levels Derived by 3D EBSD.” Acta Materialia 99: 402–414. https://doi.org/10.1016/j.actamat.2015.06.051.
  • Kou, Sindo. 2015. “A Criterion for Cracking During Solidification.” Acta Materialia 88: 366–374. https://doi.org/10.1016/j.actamat.2015.01.034.
  • Kozar, R. W., A. Suzuki, W. W. Milligan, J. J. Schirra, M. F. Savage, and T. M. Pollock. 2009. “Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys.” Metallurgical and Materials Transactions A 40: 1588–1603. https://doi.org/10.1007/s11661-009-9858-5.
  • Lee, Jung-Uk, Young-Kyun Kim, Seong-Moon Seo, and Kee-Ahn Lee. 2022. “Effects of hot Isostatic Pressing Treatment on the Microstructure and Tensile Properties of Ni-Based Superalloy CM247LC Manufactured by Selective Laser Melting.” Materials Science and Engineering: A 841: 143083. https://doi.org/10.1016/j.msea.2022.143083.
  • Li, D. Y., and L. Q. Chen. 1998. “Shape Evolution and Splitting of Coherent Particles Under Applied Stresses.” Acta Materialia 47 (1): 247–257. https://doi.org/10.1016/S1359-6454(98)00323-1.
  • Liu, Xudong, Jiangkun Fan, Peizhe Zhang, Kai Cao, Zixiao Wang, Fulong Chen, Degui Liu, Bin Tang, Hongchao Kou, and Jinshan Li. 2023. “Influence of Heat Treatment on Inconel 625 Superalloy Sheet: Carbides, γ'’, δ Phase Precipitation and Tensile Deformation Behavior.” Journal of Alloys and Compounds 930, https://doi.org/10.1016/j.jallcom.2022.167522.
  • Liu, Ming, Ljuba Kerschhofer, Jed L Mosenfelder, and David C Rubie. 1998. “The Effect of Strain Energy on Growth Rates During the Olivine-Spinel Transformation and Implications for Olivine Metastability in Subducting Slabs.” Journal of Geophysical Research: Solid Earth 103 (B10): 23897–23909. https://doi.org/10.1029/98JB00794.
  • Liu, Feng, Zexin Wang, Zi Wang, Jing Zhong, Lei Zhao, Liang Jiang, Runhua Zhou, et al. 2022. “High-Throughput Method–Accelerated Design of Ni-Based Superalloys.” Advanced Functional Materials 32 (28): 2109367. https://doi.org/10.1002/adfm.202109367.
  • Lv, Yuting, Zhe Zhang, Qiang Zhang, Rui Wang, Guangbao Sun, Xizhen Chen, Hongyao Yu, Zhongnan Bi, Jinli Xie, and Guijiang Wei. 2022. “Cracking Inhibition Behavior and the Strengthening Effect of TiC Particles on the CM247LC Superalloy Prepared by Selective Laser Melting.” Materials Science and Engineering: A 858, https://doi.org/10.1016/j.msea.2022.144119.
  • Ma, Yu, Ahmed Addad, Gang Ji, Ming-Xing Zhang, Williams Lefebvre, Zhe Chen, and Vincent Ji. 2020. “Atomic-scale Investigation of the Interface Precipitation in a TiB2 Nanoparticles Reinforced Al–Zn–Mg–Cu Matrix Composite.” Acta Materialia 185: 287–299. https://doi.org/10.1016/j.actamat.2019.11.068.
  • Marchese, G., M. Lorusso, S. Parizia, E. Bassini, and S. Biamino. 2018. “Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder bed Fusion.” Materials Science and Engineering: A 729: 64–75. https://doi.org/10.1016/j.msea.2018.05.044.
  • McLean, M. 1985. “On the Threshold Stress for Dislocation Creep in Particle Strengthened Alloys.” Acta Metallurgica 33 (4): 545–556. https://doi.org/10.1016/0001-6160(85)90018-5.
  • Mughrabi, H. J. M. S. 1987. “A two-Parameter Description of Heterogeneous Dislocation Distributions in Deformed Metal Crystals.” Materials Science and Engineering 85: 15–31. https://doi.org/10.1016/0025-5416(87)90463-0.
  • Narasimharaju, Shubhavardhan Ramadurga, Wenhan Zeng, Tian Long See, Zicheng Zhu, Paul Scott, Xiangqian Jiang, and Shan Lou. 2022. “A Comprehensive Review on Laser Powder bed Fusion of Steels: Processing, Microstructure, Defects and Control Methods, Mechanical Properties, Current Challenges and Future Trends.” Journal of Manufacturing Processes 75: 375–414. https://doi.org/10.1016/j.jmapro.2021.12.033.
  • Park, Ji-Un, Sun-Young Jun, Bong Ho Lee, Jae Hoon Jang, Byoung-Soo Lee, Hae-Jin Lee, Je-Hyun Lee, and Hyun-Uk Hong. 2022. “Alloy Design of Ni-Based Superalloy with High γ′ Volume Fraction Suitable for Additive Manufacturing and its Deformation Behavior.” Additive Manufacturing 52, https://doi.org/10.1016/j.addma.2022.102680.
  • Rajendran, R., Vijay Petley, and Birgit Rehmer. 2013. “Dynamic Elastic Properties of Aero-Engine Metallic Isotropic Materials.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 227 (3): 243–249. https://doi.org/10.1177/1464420712454071.
  • Reed, R. 2006. The Superalloys: Fundamentals and Applications. Cambridge University Press.
  • Reed, Roger C. 2008. The Superalloys: Fundamentals and Applications. Cambridge University Press.
  • Roth, H. A., C. L. Davis, and R. C. Thomson. 1997. “Modeling Solid Solution Strengthening in Nickel Alloys.” Metallurgical and Materials Transactions A 28: 1329–1335. https://doi.org/10.1007/s11661-997-0268-2.
  • Sanchez, Salomé, Peter Smith, Zhengkai Xu, Gabriele Gaspard, Christopher J. Hyde, Wessel W. Wits, Ian A. Ashcroft, Hao Chen, and Adam T. Clare. 2021. “Powder Bed Fusion of Nickel-Based Superalloys: A Review.” International Journal of Machine Tools and Manufacture 165, https://doi.org/10.1016/j.ijmachtools.2021.103729.
  • Seitz, E., and D. De Fontaine. 1978. “Elastic Interaction Energy Calculations for Guinier-Preston Zones in -Cu and -Be.” Acta Metallurgica 26 (11): 1671–1679. https://doi.org/10.1016/0001-6160(78)90077-9.
  • Selvaraj, Senthil Kumaran, G. Sundaramali, S. Jithin Dev, R. Srii Swathish, Rahul Karthikeyan, K. E. Vijay Vishaal, Velmurugan Paramasivam, and Fuat Kara. 2021. “Recent Advancements in the Field of Ni-Based Superalloys.” Advances in Materials Science and Engineering 2021: 1–60. https://doi.org/10.1155/2021/9723450.
  • Shahwaz, M., Prekshya Nath, and Indrani Sen. 2022. “A Critical Review on the Microstructure and Mechanical Properties Correlation of Additively Manufactured Nickel-Based Superalloys.” Journal of Alloys and Compounds 907, https://doi.org/10.1016/j.jallcom.2022.164530.
  • Shang, Z., Jie Ding, C. Fan, M. Song, Jin Li, Q. Li, S. Xue, K. T. Hartwig, and X. Zhang. 2019. “Tailoring the Strength and Ductility of T91 Steel by Partial Tempering Treatment.” Acta Materialia 169: 209–224. https://doi.org/10.1016/j.actamat.2019.02.043.
  • Sims, C. T., N. S. Stoloff, and W. C. Hagel. 1987. Superalloys II. Vol. 8. Wiley New York.
  • Şimşek, Barış, Yusuf Tansel İç, and Emir H. Şimşek. 2016. “A RSM-Based Multi-Response Optimization Application for Determining Optimal Mix Proportions of Standard Ready-Mixed Concrete.” Arabian Journal for Science and Engineering 41 (4): 1435–1450. https://doi.org/10.1007/s13369-015-1987-0.
  • Singh, Kulvir. 2014. “Advanced Materials for Land Based Gas Turbines.” Transactions of the Indian Institute of Metals 67 (5): 601–615. https://doi.org/10.1007/s12666-014-0398-3.
  • Singh, Sukhdeep, and Joel Andersson. 2018. “Hot Cracking in Cast Alloy 718.” Science and Technology of Welding and Joining 23 (7): 568–574. https://doi.org/10.1080/13621718.2018.1429238.
  • Su, C. H., and P. W. Voorhees. 1996. “The Dynamics of Precipitate Evolution in Elastically Stressed Solids—II. Particle Alignment.” Acta Materialia 44 (5): 2001–2016. https://doi.org/10.1016/1359-6454(95)00285-5.
  • Sun, S., Q. Teng, Y. Xie, T. Liu, and Q. Wei. 2021. “Two-step Heat Treatment for Laser Powder bed Fusion of a Nickel-Based Superalloy with Simultaneously Enhanced Tensile Strength and Ductility.” Additive Manufacturing 46 (1): 102168. https://doi.org/10.1016/j.addma.2021.102168.
  • Sundararaman, M., P. Mukhopadhyay, and S. Banerjee. 1988. “Precipitation of the δ-Ni3Nb Phase in two Nickel Base Superalloys.” Metallurgical Transactions A 19: 453–465. https://doi.org/10.1007/BF02649259.
  • Takahashi, Akiyuki, Mitsuru Kawanabe, and Nasr M. Ghoniem. 2010. “γ-precipitate Strengthening in Nickel-Based Superalloys.” Philosophical Magazine 90 (27-28): 3767–3786. https://doi.org/10.1080/14786435.2010.497470.
  • Tan, Liming, Guowei Wang, Yu Guo, Qihong Fang, Zecheng Liu, Xiangyou Xiao, Wuqiang He, et al. 2020. “Additively Manufactured Oxide Dispersion Strengthened Nickel-Based Superalloy with Superior High Temperature Properties.” Virtual and Physical Prototyping 15 (sup1): 555–569. https://doi.org/10.1080/17452759.2020.1848283.
  • Tan, Chaolin, Ji Zou, Di Wang, Wenyou Ma, and Kesong Zhou. 2022. “Duplex Strengthening via SiC Addition and in-Situ Precipitation in Additively Manufactured Composite Materials.” Composites Part B: Engineering 236, https://doi.org/10.1016/j.compositesb.2022.109820.
  • Tan, C., J. Zou, D. Wang, W. Ma, and K. Zhou. 2022a. “Duplex Strengthening via SiC Addition and in-Situ Precipitation in Additively Manufactured Composite Materials.” Composites Part B: Engineering 236: 109820. https://doi.org/10.1016/j.compositesb.2022.109820.
  • Tang, Y. T., C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. Clark, A. A. Németh, D. G. McCartney, and R. C. Reed. 2021. “Alloys-by-design: Application to new Superalloys for Additive Manufacturing.” Acta Materialia 202: 417–436. https://doi.org/10.1016/j.actamat.2020.09.023.
  • Tang, Y. T., C. Panwisawas, J. N. Ghoussoub, Y. Gong, and R. C. Reed. 2020. “Alloys-By-Design: Application to New Superalloys for Additive Manufacturing.” Acta Materialia 202: 417–436. https://doi.org/10.1016/j.actamat.2020.09.023.
  • Wang, Z., G. Kai, G. Ming, X. Li, X. Chen, and X. Zeng. 2012. “The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting.” Journal of Alloys and Compounds 513 (none): 518–523. https://doi.org/10.1016/j.jallcom.2011.10.107.
  • Weertman, J. R. 1993. “Hall-Petch Strengthening in Nanocrystalline Metals.” Materials Science and Engineering: A 166 (1-2): 161–167. https://doi.org/10.1016/0921-5093(93)90319-A.
  • Wei, D., Q. Han, L. Cai, X. Min, and F. Fang. 2021. “Strengthening Iron Wires Through Gradient Grain Structure.” Materials Characterization 171: 110821. https://doi.org/10.1016/j.matchar.2020.110821.
  • Wong, T. W., A. Hadadzadeh, and Mary A Wells. 2018. “High Temperature Deformation Behavior of Extruded AZ31B Magnesium Alloy.” Journal of Materials Processing Technology 251: 360–368. https://doi.org/10.1016/j.jmatprotec.2017.09.006.
  • Xu, Jinghao, Hans Gruber, Robert Boyd, Shuang Jiang, Ru Lin Peng, and Johan J Moverare. 2020. “On the Strengthening and Embrittlement Mechanisms of an Additively Manufactured Nickel-Base Superalloy.” Materialia 10: 100657. https://doi.org/10.1016/j.mtla.2020.100657.
  • Xu, Jinghao, Paraskevas Kontis, Ru Lin Peng, and Johan Moverare. 2022. “Modelling of Additive Manufacturability of Nickel-Based Superalloys for Laser Powder bed Fusion.” Acta Materialia 240, https://doi.org/10.1016/j.actamat.2022.118307.
  • Yang, Shengzhao, Quanquan Han, Yingyue Yin, Jian Gao, Zhenhua Zhang, Yuchen Gu, and Kenny W. Q. Low. 2021. “Effects of Micrometer-Sized TiB2 on Crack Mitigation, Mechanical and Electrochemical Performance of a Ni-Based Alloy Fabricated by Selective Laser Melting.” Optics & Laser Technology 142 (1), https://doi.org/10.1016/j.optlastec.2021.107240.
  • Yang, Bo, Z. Shang, Jie Ding, Jack Lopez, William Jarosinski, T. Sun, N. Richter, Y. Zhang, H. Wang, and X. Zhang. 2022. “Investigation of Strengthening Mechanisms in an Additively Manufactured Haynes 230 Alloy.” Acta Materialia 222: 117404. https://doi.org/10.1016/j.actamat.2021.117404.
  • Yang, Jinxia, Qi Zheng, Xiaofeng Sun, Hengrong Guan, and Zhuangqi Hu. 2006. “Relative Stability of Carbides and Their Effects on the Properties of K465 Superalloy.” Materials Science and Engineering: A 429 (1-2): 341–347. https://doi.org/10.1016/j.msea.2006.05.091.
  • Yoo, Y. S. 2005. “Morphological Instability of Spherical γ′ Precipitates in a Nickel Base Superalloy.” Scripta Materialia 53 (1): 81–85. https://doi.org/10.1016/j.scriptamat.2005.03.022.
  • Yu, Hao, Jingjing Liang, Zhongnan Bi, Jinguo Li, and Wei Xu. 2022. “Computational Design of Novel Ni Superalloys with Low Crack Susceptibility for Additive Manufacturing.” Metallurgical and Materials Transactions A 53 (6): 1945–1954. https://doi.org/10.1007/s11661-022-06653-x.
  • Yu, Hao, Zhaotian Wang, Baoyun Zhang, Yongquan Ning, and M. W. Fu. 2021. “Re-precipitation Mechanisms of the γ′ Phase with Sphere, Near-Sphere, Cubic, Octets and Finally-Dendrite in as-Cast Ni-Based Superalloys.” Journal of Alloys and Compounds 876: 160104. https://doi.org/10.1016/j.jallcom.2021.160104.
  • Zhang, Zhenhua, Quanquan Han, Zhongyi Liu, Jian Gao, Liqiao Wang, Hanlian Liu, Rui Wang, Teng Ma, and Zhengjiang Gao. 2022. “Combined Effects of Heat Treatment and TiB2 Content on the High-Temperature Tensile Performance of TiB2-Modified Ni-Based GH3230 Alloy Processed by Laser Powder bed Fusion.” Materials Science and Engineering: A 861, https://doi.org/10.1016/j.msea.2022.144379.
  • Zhang, Zhenhua, Quanquan Han, Zhongyi Liu, Xiaobo Wang, Liqiao Wang, Xusheng Yang, Teng Ma, and Zhengjiang Gao. 2022. “Influence of the TiB2 Content on the Processability, Microstructure and High-Temperature Tensile Performance of a Ni-Based Superalloy by Laser Powder bed Fusion.” Journal of Alloys and Compounds 908: 164656. https://doi.org/10.1016/j.jallcom.2022.164656.
  • Zhang, Zhenhua, Quanquan Han, Shengzhao Yang, Yingyue Yin, Jian Gao, and Rossitza Setchi. 2021. “Laser Powder bed Fusion of Advanced Submicrometer TiB2 Reinforced High-Performance Ni-Based Composite.” Materials Science and Engineering: A 817, https://doi.org/10.1016/j.msea.2021.141416.
  • Zhang, S., X. Lin, L. Wang, X. Yu, and W. Huang. 2021. “Strengthening Mechanisms in Selective Laser-Melted Inconel718 Superalloy.” Materials Science and Engineering: A, 812: 141145. https://doi.org/10.1016/j.msea.2021.141145.
  • Zhao, Xujun, Ravindra Duddu, Stéphane PA Bordas, and Jianmin Qu. 2013. “Effects of Elastic Strain Energy and Interfacial Stress on the Equilibrium Morphology of Misfit Particles in Heterogeneous Solids.” Journal of the Mechanics and Physics of Solids 61 (6): 1433–1445. https://doi.org/10.1016/j.jmps.2013.01.012.
  • Zhao, Yanan, Zongqing Ma, Liming Yu, and Yongchang Liu. 2023. “New Alloy Design Approach to Inhibiting hot Cracking in Laser Additive Manufactured Nickel-Based Superalloys.” Acta Materialia 247, https://doi.org/10.1016/j.actamat.2023.118736.
  • Zhou, Wenzhe, Yusheng Tian, Qingbiao Tan, Shen Qiao, Hua Luo, Guoliang Zhu, Da Shu, and Baode Sun. 2022. “Effect of Carbon Content on the Microstructure, Tensile Properties and Cracking Susceptibility of IN738 Superalloy Processed by Laser Powder bed Fusion.” Additive Manufacturing 58, https://doi.org/10.1016/j.addma.2022.103016.
  • Zhou, W., G. Zhu, R. Wang, C. Yang, and B. Sun. 2020. “Inhibition of Cracking by Grain Boundary Modification in a non-Weldable Nickel-Based Superalloy Processed by Laser Powder bed Fusion.” Materials Science and Engineering: A 791: 139745. https://doi.org/10.1016/j.msea.2020.139745.
  • Zhu, Lilong, Xin Yu, Weifu Li, Lina Zhang, Nianxue Zhang, Yanan Lv, Lei Zhao, et al. 2023. “High-throughput Investigation of Nb and Ta Alloying Effects on the Microstructure and Properties of a Novel Ni-Co-Based Superalloy.” Scripta Materialia 226, https://doi.org/10.1016/j.scriptamat.2022.115215.