1,221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Terahertz reconfigurable multi-functional metamaterials based on 3D printed mortise-tenon structures

, , &
Article: e2230468 | Received 04 Apr 2023, Accepted 24 Jun 2023, Published online: 06 Jul 2023

References

  • Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater. 2011. “Broadband Polarization-Independent Resonant Light Absorption Using Ultrathin Plasmonic Super Absorbers.” Nature Communications 2: 517. https://doi.org/10.1038/ncomms1528.
  • Cai, H., S. Chen, C. Zou, Q. Huang, Y. Liu, X. Hu, Z. Fu, Y. Zhao, H. He, and Y. Lu. 2018. “Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves.” Advanced Optical Materials 6 (14): 1800257. https://doi.org/10.1002/adom.201800257.
  • Chen, X., Y. Li, Y. Fu, and N. Yuan. 2012. “Design and Analysis of Lumped Resistor Loaded Metamaterial Absorber with Transmission Band.” Optics Express 20 (27): 28347–28352. https://doi.org/10.1364/OE.20.028347.
  • Chen, C., H. Qiu, and Y. Lu. 2016. “Flexural Behaviour of Timber Dovetail Mortise-Tenon Joints.” Construction and Building Materials 112: 366–377. https://doi.org/10.1016/j.conbuildmat.2016.02.074.
  • Chen, Q., S. Yang, J. Bai, and Y. Fu. 2017. “Design of Absorptive/Transmissive Frequency-Selective Surface Based on Parallel Resonance.” IEEE Transactions on Antennas and Propagation 65 (9): 4897–4902. https://doi.org/10.1109/TAP.2017.2722875.
  • Chen, W., K. Yang, C. Wang, Y. Huang, G. Sun, I. Chiang, C. Liao, et al. 2013. “High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images.” Nano Letters 14 (1): 225–230. https://doi.org/10.1021/nl403811d.
  • Christopher, Y., B. Pham, R. Tsai, K. T. Fountaine, and A. P. Raman. 2023. “DeepAdjoint: An All-in-One Photonic Inverse Design Framework Integrating Data-Driven Machine Learning with Optimization Algorithms.” ACS Photonics 10 (4): 884–891. https://doi.org/10.1021/acsphotonics.2c00968.
  • Costa, F., and A. Monorchio. 2012. “A Frequency Selective Radome With Wideband Absorbing Properties.” IEEE Transactions on Antennas and Propagation 60 (6): 2740–2747. https://doi.org/10.1109/TAP.2012.2194640.
  • Cui, E., Z. Wan, C. Ke, C. Wu, D. Wang, and C. Lei. 2023. “Flexible and Efficient Fabrication of a Terahertz Absorber by Single-Step Laser Direct Writing.” Optics Express 30 (24): 42944–42955. https://doi.org/10.1364/OE.468753.
  • Emile, C., X. Song, Y. Wu, and K. Li. 2018. “Lateral Performance of Mortise-Tenon Jointed Traditional Timber Frames with Wood Panel Infill.” Engineering Structures 161: 223–230. https://doi.org/10.1016/j.engstruct.2018.02.022.
  • Feng, Q., D. Zheng, Y. Liu, P. Chen, and Y. Lin. 2023. “Actively Switchable Terahertz Spiral-Shaped Metamaterial with Programmable Performance.” Optics and Laser Technology 158 (A): 108853. https://doi.org/10.1016/j.optlastec.2022.108853.
  • Gao, E., H. Li, Z. Liu, C. Xiong, C. Liu, B. Ruan, M. Li, and B. Zhang. 2020. “Terahertz Multifunction Switch and Optical Storage Based on Triple Plasmon-Induced Transparency on a Single-Layer Patterned Graphene Metasurface.” Optics Express 28 (26): 40013–40023. https://doi.org/10.1364/OE.412061.
  • Ge, J., Y. Zhang, H. Dong, and L. Zhang. 2022. “Nanolayered VO2-Based Switchable Terahertz Metasurfaces as Near-Perfect Absorbers and Antireflection Coatings.” Acs Applied Nano Materials 5 (4): 5569–5577. https://doi.org/10.1021/acsanm.2c00531.
  • Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer. 2010. “A Broadband low-Reflection Metamaterial Absorber.” Journal of Applied Physics 108 (6): 064913. https://doi.org/10.1063/1.3485808.
  • Gu, W., J. Sheng, Q. Huang, G. Wang, J. Chen, and G. Ji. 2021. “Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption.” Nano-Micro Letters 13 (1): 102. https://doi.org/10.1007/s40820-021-00635-1.
  • Huang, J., J. Li, Y. Yang, J. Li, J. Ii, Y. Zhang, and J. Yao. 2020. “Active Controllable Dual Broadband Terahertz Absorber Based on Hybrid Metamaterials with Vanadium Dioxide.” Optics Express 28 (5): 7018–7027. https://doi.org/10.1364/OE.387156.
  • Jahani, S., and Z. Jacob. 2016. “All-dielectric Metamaterials.” Nature Nanotechnology 11 (1): 23–36. https://doi.org/10.1038/nnano.2015.304.
  • Kenney, M., J. Grant, Y. D. ShahOrcid, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming. 2017. “Octave-Spanning Broadband Absorption of Terahertz Light Using Metasurface Fractal-Cross Absorbers.” ACS Photonics 4 (10): 2604–2612. https://doi.org/10.1021/acsphotonics.7b00906.
  • Li, X., T. Cui, S. Zhuang, W. Qian, L. Lin, W. Su, C. Gong, and W. Liu. 2023. “Multi-functional Terahertz Metamaterials Based on Nano-Imprinting.” Optics Express 31 (6): 9224–9235. https://doi.org/10.1364/OE.481919.
  • Li, Z., X. Li, J. Chua, C. Lim, X. Yu, Z. Wang, and W. Zhai. 2023. “Architected Lightweight,: Sound-Absorbing, and Mechanically Efficient Microlattice Metamaterials by Digital Light Processing 3D Printing.” Virtual and Physical Prototypinge 18 (1): e2166851. https://doi.org/10.1080/17452759.2023.2166851.
  • Li, Z., X. Li, Z. Wang, and W. Zhai. 2023. “Multifunctional Sound-Absorbing and Mechanical Metamaterials via a Decoupled Mechanism Design Approach.” Materials Horizons 10 (1): 75–87. https://doi.org/10.1039/D2MH00977C.
  • Li, J., J. Li, C. Zheng, L. Liu, Z. Yue, H. Xu, X. Hao, et al. 2022. “Broadband and Tunable Terahertz Absorption via Photogenerated Carriers in Undoped Silicon.” Science China-Physics Mechanics & Astronomy 65 (1): 214211. https://doi.org/10.1007/s11433-021-1799-7.
  • Li, S., Z. Shen, W. Yin, L. Zhang, and X. Chen. 2022. “3D-printed Terahertz Metamaterial for Electromagnetically Induced Reflection Analogue.” Journal of Physics D: Applied Physics 55 (32): 325003. https://doi.org/10.1088/1361-6463/ac708c.
  • Li, H., H. Song, M. Long, G. Saeed, and S. Lim. 2021. “Mortise-tenon Joint Structured Hydrophobic Surface-Functionalized Barium Titanate/Polyvinylidene Fluoride Nanocomposites for Printed Self-Powered Wearable Sensors.” Nanoscale 13 (4): 2542–2555. https://doi.org/10.1039/D0NR07525F.
  • Li, Z., X. Wang, X. Li, Z. Wang, and W. Zhai. 2023. “New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption,: Damage Tolerance, and High Specific Strength.” ACS Applied Materials & Interfaces 15 (7): 9940–9952. https://doi.org/10.1021/acsami.2c19456.
  • Li, S., L. Zhang, and X. Chen. 2021. “3D-printed Terahertz Metamaterial Absorber Based on Vertical Split-Ring Resonator.” Journal of Applied Physics 130 (3): 034504. https://doi.org/10.1063/5.0056276.
  • Li, S., Z. Zhou, H. Luo, G. Milani, and D. Abruzzese. 2020. “Behavior of Traditional Chinese Mortise-Tenon Joints: Experimental and Numerical Insight for Coupled Vertical and Reversed Cyclic Horizontal Loads.” Journal of Building Engineering 30: 101257. https://doi.org/10.1016/j.jobe.2020.101257.
  • Liu, C., L. Chen, T. Wu, Y. Liu, J. Li, Y. Wang, Z. Yu, H. Ye, and L. Yu. 2019. “All-dielectric Three-Element Transmissive Huygens’ Metasurface Performing Anomalous Refraction.” Photonics Research 7 (12): 1501–1510. https://doi.org/10.1364/PRJ.7.001501.
  • Liu, S., T. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. Tang, et al. 2016. “Anisotropic Coding Metamaterials and Their Powerful Manipulation of Differently Polarized Terahertz Waves.” Light-Science & Applications 5: e16076. https://doi.org/10.1038/lsa.2016.76.
  • Liu, Z., E. Gao, X. Zhang, H. Li, H. Xu, Z. Zhang, X. Luo, and F. Zhou. 2020. “Terahertz Electro-Optical Multi-Functional Modulator and its Coupling Mechanisms Based on Upper-Layer Double Graphene Ribbons and Lower-Layer a Graphene Strip.” New Journal of Physics 22 (5): 053039. https://doi.org/10.1088/1367-2630/ab83d5.
  • Liu, Y., X. Huang, X. Yan, L. Xia, T. Zhang, J. Sun, Y. Liu, and Y. Zhou. 2023. “Pushing the Limits of Microwave Absorption Capability of Carbon Fiber in Fabric Design Based on Genetic Algorithm.” Journal of Advanced Ceramics 12 (2): 329–340. https://doi.org/10.26599/JAC.2023.9220686.
  • Liu, S., A. Noor, L. Du, L. Zhang, Q. Xu, K. Luan, T. Wang, et al. 2016. “Anomalous Refraction and Nondiffractive Bessel-Beam Generation of Terahertz Waves Through Transmission-Type Coding Metasurfaces.” Acs Photonics 3 (10): 1968–1977. https://doi.org/10.1021/acsphotonics.6b00515.
  • Liu, W., Q. Yang, Q. Xu, X. Jiang, T. Wu, J. Gu, J. Han, and W. Zhang. 2022. “Multichannel Terahertz Quasi-Perfect Vortex Beams Generation Enabled by Multifunctional Metasurfaces.” Nanophotonics 11 (16): 3631–3640. https://doi.org/10.1515/nanoph-2022-0270.
  • Liu, W., Q. Yang, Q. Xu, X. Jiang, T. Wu, K. Wang, J. Gu, J. Han, and W. Zhang. 2021. “Multifunctional All-Dielectric Metasurfaces for Terahertz Multiplexing.” Advanced Optical Materials 9 (19): 2100506. https://doi.org/10.1002/adom.202100506.
  • Lu, B., F. Liu, G. Sun, J. Gao, T. Xu, Y. Xiao, C. Shao, et al. 2020. “Compact Assembly and Programmable Integration of Supercapacitors.” Advanced Materials 32 (6): 1907005. https://doi.org/10.1002/adma.201907005.
  • Mohan, N., P. Senthil, S. Vinodh, and N. Jayanth. 2017. “A Review on Composite Materials and Process Parameters Optimisation for the Fused Deposition Modelling Process.” Virtual and Physical Prototyping 12 (1): 47–59. https://doi.org/10.1080/17452759.2016.1274490.
  • Palermo, G., A. Lininger, A. Guglielmelli, L. Ricciardi, G. Nicoletta, A. De Luca, J. S. Park, et al. 2022. “All-Optical Tunability of Metalenses Permeated with Liquid Crystals.” ACS Nano 16 (10): 16539–16548. https://doi.org/10.1021/acsnano.2c05887.
  • Pan, H., and H. Zhang. 2022. “Broadband Polarization-Insensitive Coherent Rasorber in Terahertz Metamaterial with Enhanced Anapole Response and Coupled Toroidal Dipole Modes.” Advanced Optical Materials 10 (2): 2101688. https://doi.org/10.1002/adom.202101688.
  • Pendry, J., A. Holden, D. Robbins, and W. Stewart. 1999. “Magnetism from Conductors and Enhanced Nonlinear Phenomena.” IEEE Transactions on Microwave Theory and Techniques 47 (11): 2075–2084. https://doi.org/10.1109/22.798002.
  • Ren, Z., L. Cheng, L. Hu, C. Liu, C. Jiang, S. Yang, Z. Ma, et al. 2020. “Photoinduced Broad-Band Tunable Terahertz Absorber Based on a VO2 Thin Film.” Acs Applied Materials & Interfaces 12 (43): 48811–48819. https://doi.org/10.1021/acsami.0c15297.
  • Rezaei, S. D., Z. Dong, H. Wang, J. Xu, H. Wang, M. T. Yaraki, K. C. H. Goh, et al. 2023. “Tri-functional Metasurface Enhanced with a Physically Unclonable Function.” Materials Today 62: 51–61. https://doi.org/10.1016/j.mattod.2022.11.010.
  • Shelby, R., D. Smith, and S. Schultz. 2011. “Experimental Verification of a Negative Index of Refraction.” Science 292 (5514): 77–79. https://doi.org/10.1126/science.1058847.
  • Shen, Z., S. Li, Y. Xu, W. Yin, L. Zhang, and X. Chen. 2021. “Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers.” Physical Review Applied 16 (1): 014066. https://doi.org/10.1103/PhysRevApplied.16.014066.
  • Shen, Z., S. Zhou, S. Ge, W. Duan, P. Chen, L. Wang, W. Hu, and Y. Lu. 2018. “Liquid-crystal-integrated Metadevice: Towards Active Multifunctional Terahertz Wave Manipulations.” Optics Letters 43 (19): 4695–4698. https://doi.org/10.1364/OL.43.004695.
  • Shui, W., J. Li, H. Wang, Y. Xing, Y. Li, Q. Yang, X. Xiao, Q. Wen, and H. Zhang. 2020. “Ti(3)C(2)T(x)MXene Sponge Composite as Broadband Terahertz Absorber.” Advanced Optical Materials 8 (21): 2001120. https://doi.org/10.1002/adom.202001120.
  • Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis. 2005. “Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials.” Physical Review E 71 (3): 036617. https://doi.org/10.1103/PhysRevE.71.036617.
  • Tenggara, A. P., S. J. Park, H. T. Yudistira, Y. H. Ahn, and D. Byun. 2017. “Fabrication of Terahertz Metamaterials Using Electrohydrodynamic jet Printing for Sensitive Detection of Yeast.” Journal of Micromechanics and Microengineering 27 (3): 035009. https://doi.org/10.1088/1361-6439/aa5a9f.
  • Vashistha, V., G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk. 2017. “All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut.” ACS Photonics 4 (5): 1076–1082. https://doi.org/10.1021/acsphotonics.6b00853.
  • Veselago, V. 1968. “The Electrodynamics of Substances with Simultaneously Negative Values of ϵ and μ.” Physicsm Uspekhi 10 (4): 509–514. https://doi.org/10.1070/PU1968v010n04ABEH003699.
  • Wang, H., B. Yan, H. Jin, Z. Wang, L. Guo, B. Li, B. Yu, and C. Gong. 2021. “Perfect Absorber with Separated ‘Dielectric-Metal-Ground’ Metamaterial Structure.” Journal of Physics D-Applied Physics 54 (22): 225105. https://doi.org/10.1088/1361-6463/abe901.
  • Wang, Z., Y. Yao, W. Pan, H. Zhou, Y. Chen, J. Lin, J. Hao, et al. 2022. “Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces.” Advanced Science 10 (4): 2205499. https://doi.org/10.1002/advs.202205499.
  • Wu, T., Q. Xu, X. Zhang, Y. Xu, X. Chen, X. Feng, L. Niu, F. Huang, J. Han, and W. Zhang. 2022. “Spin-Decoupled Interference Metasurfaces for Complete Complex-Vectorial-Field Control and Five-Channel Imaging.” Advanced Science 9 (35): 2204664. https://doi.org/10.1002/advs.202204664.
  • Xu, Y., Q. Li, X. Zhang, M. Wei, Q. Xu, Q. Wang, H. Zhang, et al. 2019. “Spin-Decoupled Multifunctional Metasurface for Asymmetric Polarization Generation.” Acs Photonics 6 (11): 2933–2941. https://doi.org/10.1021/acsphotonics.9b01047.
  • Xu, R., X. Xu, and Y. Lin. 2022. “Electrothermally Tunable Terahertz Cross-Shaped Metamaterial for Opto-Logic Operation Characteristics.” iScience 25 (4): 104072. https://doi.org/10.1016/j.isci.2022.104072.
  • Yan, B., B. Yu, J. Xu, Y. Li, Z. Wang, Z. Wang, B. Yu, H. Ma, and C. Gong. 2021. “Customized Meta-Waveguide for Phase and Absorption.” Journal of Physics D-Applied Physics 54 (46): 465102. https://doi.org/10.1088/1361-6463/ac1466.
  • Yang, T., X. Li, B. Yu, and C. Gong. 2023. “Design and Print Terahertz Metamaterials Based on Electrohydrodynamic Jet.” Micromachines 14 (3): 14030659. https://doi.org/10.3390/mi14030659.
  • Yang, F., Z. Liang, D. Meng, X. Shi, Z. Qin, R. Dai, C. Sun, Y. Ren, J. Feng, and W. Liu. 2023. “High-quality Factor mid-Infrared Absorber Based on all-Dielectric Metasurfaces.” Optics Express 31 (4): 5747–5756. https://doi.org/10.1364/OE.482987.
  • Yang, W., and Y. Lin. 2020. “Tunable Metamaterial Filter for Optical Communication in the Terahertz Frequency Range.” Optics Express 28 (12): 17620–17629. https://doi.org/10.1364/OE.396620.
  • Yu, B., S. Zhuang, Z. Wang, M. Wang, L. Guo, X. Li, W. Guo, W. Su, C. Gong, and W. Liu. 2022. “Nano-printing Technology Based Double-Spiral Terahertz Tunable Metasurface.” Acta Physica Sinica 71 (11): 117801. https://doi.org/10.7498/aps.71.20212408.
  • Yuan, W., S. Xu, C. Yu, M. Ding, Y. Zheng, J. Zhou, G. Shan, Y. Bao, and P. Pan. 2022. “Photothermal Driven Polymorph Pattern in Semicrystalline Polymers Towards Programmable Shape Morphing.” Chemical Engineering Journal 446 (4): 137346. https://doi.org/10.1016/j.cej.2022.137346.
  • Zhang, T., Y. Duan, J. Liu, H. Lei, J. Sun, H. Pang, and L. Huang. 2023. “Asymmetric Electric Field Distribution Enhanced Hierarchical Metamaterials for Radar-Infrared Compatible Camouflage.” Journal of Materials Science & Technology 146: 10–18. https://doi.org/10.1016/j.jmst.2022.10.043.
  • Zhang, J., X. Wei, I. D. Rukhlenko, H. Chen, and W. Zhu. 2020. “Electrically Tunable Metasurface with Independent Frequency and Amplitude Modulations.” Acs Photonics 7 (1): 265–271. https://doi.org/10.1021/acsphotonics.9b01532.
  • Zhang, L., R. Wu, G. Bai, H. Wu, Q. Ma, X. Chen, and T. Cui. 2018. “Transmission-Reflection-Integrated Multifunctional Coding Metasurface for Full-Space Controls of Electromagnetic Waves.” Advanced Functional Materials 28 (33): 1802205. https://doi.org/10.1002/adfm.201802205.
  • Zhang, Z., Q. Xie, L. Guo, C. Su, M. Wang, F. Xia, J. Sun, K. Li, H. Feng, and M. Yun. 2022. “Dual-controlled Tunable Dual-Band and Ultra-Broadband Coherent Perfect Absorber in the THz Range.” Optics Express 30 (17): 30832–30844. https://doi.org/10.1364/OE.464682.
  • Zhao, X., J. He, F. Xu, Y. Liu, and D. Li. 2016. “Electrohydrodynamic Printing: A Potential Tool for High-Resolution Hydrogel/Cell Patterning.” Virtual and Physical Prototyping 11 (1): 57–63. https://doi.org/10.1080/17452759.2016.1139378.
  • Zheng, X., M. Hu, Y. Liu, J. Zhang, X. Li, X. Li, and H. Yang. 2022. “High-resolution Flexible Electronic Devices by Electrohydrodynamic jet Printing: From Materials Toward Applications.” Science China-Materials 65 (8): 2089–2109. https://doi.org/10.1007/s40843-021-1988-8.
  • Zhu, W., A. Liu, T. Bourouina, D. P. Tsai, J. Teng, X. Zhang, G. Lo, D. Kwong, and N. I. Zheludev. 2012. “Microelectromechanical Maltese-Cross Metamaterial with Tunable Terahertz Anisotropy.” Nature Communications 3: 1274. https://doi.org/10.1038/ncomms2285.
  • Zou, W., H. Yu, P. Zhou, and L. Liu. 2019. “Tip-assisted Electrohydrodynamic jet Printing for High-Resolution Microdroplet Deposition.” Materials & Design 166: 107609. https://doi.org/10.1016/j.matdes.2019.107609.