854
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Additively manufactured aluminium nested composite hybrid rocket fuel grains with breathable blades

, ORCID Icon, , , , , , , & show all
Article: e2235680 | Received 17 May 2023, Accepted 08 Jul 2023, Published online: 18 Aug 2023

References

  • Armold, D. M., J. E. Boyer, B. McKnight, K. Kuo, J. Desain, B. B. Brady, J. Fuller, and T. J. Curtiss. 2014. “Testing of Hybrid Rocket Fuel Grains at Elevated Temperatures with Swirl Patterns Fabricated Using Rapid Prototyping Technology.” 50th AIAA/ASME/SAE/ASEE joint propulsion conference. https://doi.org/10.2514/6.2014-3754.
  • Bisin, R., C. Paravan, S. Alberti, and L. Galfetti. 2020. “A New Strategy for the Reinforcement of Paraffin-Based Fuels Based on Cellular Structures: The Armored Grain — Mechanical Characterization.” Acta Astronautica 176: 494–509. https://doi.org/10.1016/j.actaastro.2020.07.003
  • Bonatti, C., and D. Mohr. 2017. “Large Deformation Response of Additively-Manufactured FCC Metamaterials: From Octet Truss Lattices Towards Continuous Shell Mesostructures.” International Journal of Plasticity 92: 122–147. https://doi.org/10.1016/j.ijplas.2017.02.003
  • Bonatti, C., and D. Mohr. 2019. “Mechanical Performance of Additively-Manufactured Anisotropic and Isotropic Smooth Shell-Lattice Materials: Simulations & Experiments.” Journal of the Mechanics and Physics of Solids 122: 1–26. https://doi.org/10.1016/j.jmps.2018.08.022
  • Chan, T. Y., D. X. Wang, H. J. Chang, and C. L. Chen. 2007. “Fabrication of gas-Permeable Die Materials Having Orthogonally Arrayed Pore Channels.” Materials Science Forum 534-536: 961–964. https://doi.org/10.4028/www.scientific.net/MSF.534-536.961
  • Chua, C., Swee Leong Sing, and C. K. Chua. 2023. “Characterisation of in-Situ Alloyed Titanium-Tantalum Lattice Structures by Laser Powder Bed Fusion Using Finite Element Analysis.” Virtual and Physical Prototyping 18 (1): e2138463. https://doi.org/10.1080/17452759.2022.2138463
  • DeLuca, L. T., T. Shimada, V. P. Sinditskii, and M. Calabro. 2017. Chemical Rocket Propulsion. Switzerland: Springer International Publishing.
  • Faenza, M., A. J. Boiron, B. Haemmerli, and C. J. Verberne. 2019. “The Nammo Nucleus Launch: Norwegian Hybrid Sounding Rocket Over 100 km.” AIAA Propulsion and Energy 2019 Forum. https://doi.org/10.2514/6.2019-4049.
  • First test flight of PERUN rocket demonstrator. 2020. https://spaceforest.pl/first-test-flight-of-perun-rocket-demonstrator/.
  • Ge, W. J., S. Han, S. J. Na, and J. Y. Hsi Fuh. 2021. “Numerical Modelling of Surface Morphology in Selective Laser Melting.” Computational Materials Science 186: 110062. https://doi.org/10.1016/j.commatsci.2020.110062
  • Guo, Z. H., H. Tian, Z. S. Wang, X. Y. Meng, and G. B. Cai. 2022. “Numerical and Experimental Study on 95% Hydrogen Peroxide Catalytic Ignition of Hybrid Rocket Motors with HTPB-Based Aluminum Additive Fuel.” Acta Astronautica 195: 98–108. https://doi.org/10.1016/j.actaastro.2022.03.004
  • Hill, C., C. C. McDougall, T. Messinger, and C. T. Johansen. 2019. “Modification of Paraffin-Based Hybrid Rocket Fuels Using Structural Lattices.” AIAA Propulsion and Energy 2019 Forum. https://doi.org/10.2514/6.2019-4191
  • Ho, H. C. H., I. Gibson, and W. L. Cheung. 1999. “Effects of Energy Density on Morphology and Properties of Selective Laser Sintered Polycarbonate.” Journal of Materials Processing Technology 89-90: 204–210. https://doi.org/10.1016/S0924-0136(99)00007-2
  • Ibrahim, Khairul Amilin, Billy Wu, and Nigel P. Brandon. 2016. “Electrical Conductivity and Porosity in Stainless Steel 316L Scaffolds for Electrochemical Devices Fabricated Using Selective Laser Sintering.” Materials & Design 106: 51–59. https://doi.org/10.1016/j.matdes.2016.05.096
  • Kan, X. F., Y. J. Yin, D. C. Yang, Wei Li, and Jiquan Sun. 2021. “Micro Pool Characteristics of 316L and the Influence of Sulfur During SLM.” Optics & Laser Technology 142: 107136. https://doi.org/10.1016/j.optlastec.2021.107136
  • Karabeyoglu, A., G. Zilliac, B. J. Cantwell, S. DeZilwa, and P. Castellucci. 2004. “Scale-up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels.” Journal of Propulsion and Power 20 (6): 1037–1045. https://doi.org/10.2514/1.3340
  • Klahn, C., F. Bechmann, S. Hofmann, M. Dinkel, and C. Emmelmann. 2013. “Laser Additive Manufacturing of gas Permeable Structures.” Physics Procedia 41: 873–880. https://doi.org/10.1016/j.phpro.2013.03.161
  • Koh, Hwee Kang, James Moo, Swee Leong Sing, and Wai Yee Yeong. 2022. “Use of Fumed Silica Nanostructured Additives in Selective Laser Melting and Fabrication of Steel Matrix Nanocomposites.” Materials 15 (5): 1869. https://doi.org/10.3390/ma15051869
  • Kuo, C. N., Chee Kai Chua, P. C. Peng, Y. W. Chen, Swee Leong Sing, Sheng Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. https://doi.org/10.1080/17452759.2019.1698967
  • Li, Z. Y., G. Yu, X. L. He, S. Li, and Z. Li. 2020. “Fluid Flow and Solute Dilution in Laser Linear Butt Joining of 304SS and Ni.” International Journal of Heat and Mass Transfer 161: 120233. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120233.
  • Li, Z. Y., G. Yu, X. L. He, C. Tian, S. Li, and H. Li. 2022. “Probing Thermocapillary Convection and Multisolute Dilution in Laser Welding of Dissimilar Miscible Metals.” International Journal of Thermal Sciences 172: 107242. https://doi.org/10.1016/j.ijthermalsci.2021.107242.
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136: 24–35. https://doi.org/10.1016/j.ijmecsci.2017.12.001
  • Lin, X., D. D. Qu, X. D. Chen, Z. Z. Wang, J. X. Luo, D. D. Meng, G. L. Liu, K. Zhang, F. Li, and X. L. Yu. 2022. “Three-dimensional Printed Metal-Nested Composite Fuel Grains with Superior Mechanical and Combustion Properties.” Virtual and Physical Prototyping 17 (3): 437–450. https://doi.org/10.1080/17452759.2022.2035934
  • Lu, G., J. Shen, W. Hou, D. Ruan, and L. Ong. 2008. “Dynamic Indentation and Penetration of Aluminium Foams.” International Journal of Mechanical Sciences 50 (5): 932–943. https://doi.org/10.1016/j.ijmecsci.2007.09.006
  • Luo, Jiaxiao, Zelin Zhang, Xin Lin, Zezhong Wang, Wu Kun, Gongxi Zhou, Senhao Zhang, Fei Li, Xilong Yu, and Jie Wu. 2023. “Flame Dynamics in the Combustion Chamber of Hybrid Rocket Using Multiangle Chemiluminescence.” Journal of Propulsion and Power 39: 482–491. https://doi.org/10.2514/1.B38955.
  • Maconachie, T., M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque, and M. Brandt. 2019. “SLM Lattice Structures: Properties, Performance, Applications and Challenges.” Materials & Design 183: 108137. https://doi.org/10.1016/j.matdes.2019.108137
  • Okninski, A., W. Kopacz, D. Kaniewski, and K. Sobczak. 2021. “Hybrid Rocket Propulsion Technology for Space Transportation Revisited – Propellant Solutions and Challenges.” FirePhysChem 1 (4): 260–271. https://doi.org/10.1016/j.fpc.2021.11.015
  • Oztan, C., and V. Coverstone. 2021. “Utilization of Additive Manufacturing in Hybrid Rocket Technology: A Review.” Acta Astronautica 180: 130–140. https://doi.org/10.1016/j.actaastro.2020.11.024
  • Oztan, C., E. Ginzburg, M. Akin, Y. Zhou, R. M. Leblanc, and V. Coverstone. 2021. “3D Printed ABS/Paraffin Hybrid Rocket Fuels with Carbon Dots for Superior Combustion Performance.” Combustion and Flame 225: 428–434. https://doi.org/10.1016/j.combustflame.2020.11.024
  • Research Flights 2021 Virgin Galactic. 2021. https://www.virgingalactic.com/research/.
  • Ruan, D., G. Lu, F. Chen, and E. Siores. 2002. “Compressive Behaviour of Aluminium Foams at low and Medium Strain Rates.” Composite Structures 57 (1-4): 331–336. https://doi.org/10.1016/S0263-8223(02)00100-9
  • Ruan, D., G. Lu, L. S. Ong, and B. Wang. 2007. “Triaxial Compression of Aluminium Foams.” Composites Science and Technology 67 (6): 1218–1234. https://doi.org/10.1016/j.compscitech.2006.05.005
  • Ruan, D., G. Lu, B. Wang, and T. Yu. 2003. “In-plane Dynamic Crushing of Honeycombs—a Finite Element Study.” International Journal of Impact Engineering 28 (2): 161–182. https://doi.org/10.1016/S0734-743X(02)00056-8
  • Shen, J., G. Lu, and D. Ruan. 2010. “Compressive Behaviour of Closed-Cell Aluminium Foams at High Strain Rates.” Composites Part B: Engineering 41 (8): 678–685. https://doi.org/10.1016/j.compositesb.2010.07.005
  • Shen, C., G. Lu, and T. Yu. 2013. “Dynamic Behavior of Graded Honeycombs – A Finite Element Study.” Composite Structures 98: 282–293. https://doi.org/10.1016/j.compstruct.2012.11.002
  • Siddique, Shakib Hyder, Paul J. Hazell, Hongxu Wang, Juan P. Escobedo, and Ali A.H. Ameri. 2022. “Lessons from Nature: 3d Printed bio-Inspired Porous Structures for Impact Energy Absorption – A Review.” Additive Manufacturing 58: 103051. https://doi.org/10.1016/j.addma.2022.103051
  • Tan, Shujie, Xi Zhang, Ziyu Wang, Liping Ding, Wenliang Chen, and Yicha Zhang. 2022. “Characterization of Triply Periodic Minimal Surface Structures Obtained Using Toolpath-Based Construction Design.” Materials Science in Additive Manufacturing 1 (3): 17. https://doi.org/10.36922/msam.30
  • Tang, M., P. Chris Pistoriusa, and Jack L. Beut. 2017. “Prediction of Lack-of-Fusion Porosity for Powder bed Fusion.” Additive Manufacturing 14: 39–48. https://doi.org/10.1016/j.addma.2016.12.001
  • Voller, V., and C. Prakash. 1987. “A Fixed Grid Numerical Modelling Methodology for Convection–Diffusion Mushy Region Phase-Change Problems.” International Journal of Heat and Mass Transfer 30 (8): 1709–1719. https://doi.org/10.1016/0017-9310(87)90317-6
  • Wang, Y., S. Q. Hu, X. L. Liu, and L. L. Liu. 2022a. “Boundary Layer Combustion of HTPB/Paraffin Fuels for Hybrid Propulsion Applications.” Aerospace Science and Technology 129: 107850. https://doi.org/10.1016/j.ast.2022.107850
  • Wang, Y., S. Q. Hu, X. L. Liu, and L. L. Liu. 2022b. “Regression Rate Modeling of HTPB/Paraffin Fuels in Hybrid Rocket Motor.” Aerospace Science and Technology 121: 107324. https://doi.org/10.1016/j.ast.2021.107324
  • Wang, Z. Z., X. Lin, F. Li, J. L. Peng, Y. Liu, Z. L. Zhang, S. H. Fang, and X. L. Yu. 2021a. “Determining the Time-Resolved Mass Flow Rates of Hybrid Rocket Fuels Using Laser Absorption Spectroscopy.” Acta Astronautica 188: 110–120. https://doi.org/10.1016/j.actaastro.2021.07.028
  • Wang, Z. Z., X. Lin, F. Li, and X. L. Yu. 2020. “Combustion Performance of a Novel Hybrid Rocket Fuel Grain with a Nested Helical Structure.” Aerospace Science and Technology 97: 105613. https://doi.org/10.1016/j.ast.2019.105613
  • Wang, Z., X. Lin, F. Li, Z. L. Zhang, and X. L. Yu. 2021b. “Improving the Combustion Performance of a Hybrid Rocket Engine Using a Novel Fuel Grain with a Nested Helical Structure.” Journal of Visualized Experiments: JoVE 167: e61555. https://doi.org/10.3791/61555
  • Wei, S. S., M. C. Lee, J. W. Huang, Y. Lu, C. H. Kang, S. T. Kao, S. J. Lu, et al. 2022. “Demonstration of Tethered Hovering Flight of HTTP-3AT Hybrid Rocket.” Acta Astronautica 191: 279–292. https://doi.org/10.1016/j.actaastro.2021.08.042
  • Whitmore, S. A., Z. W. Peterson, and S. D. Eilers. 2013. “Comparing Hydroxyl Terminated Polybutadiene and Acrylonitrile Butadiene Styrene as Hybrid Rocket Fuels.” Journal of Propulsion and Power 29 (3): 582–592. https://doi.org/10.2514/1.B34382
  • Xie, Fangxia, Xinbo He, Shunli Cao, and Xuanhui Qu. 2013. “Structural and Mechanical Characteristics of Porous 316L Stainless Steel Fabricated by Indirect Selective Laser Sintering.” Journal of Materials Processing Technology 213 (6): 838–843. https://doi.org/10.1016/j.jmatprotec.2012.12.014
  • Yahaya, M., D. Ruan, G. Lu, and M. Dargusch. 2015. “Response of Aluminium Honeycomb Sandwich Panels Subjected to Foam Projectile Impact – An Experimental Study.” International Journal of Impact Engineering 75: 100–109. https://doi.org/10.1016/j.ijimpeng.2014.07.019
  • Yan, W. T., W. J. Ge, Y. Qian, S. Lin, Z. Bin, G. J. Wagner, F. Lin, and W. K. Liu. 2017. “Multi-physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting.” Acta Materialia 134: 324–333. https://doi.org/10.1016/j.actamat.2017.05.061
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. https://doi.org/10.1016/j.jallcom.2019.04.017
  • Yu, W., Z. Xiao, X. Zhang, Yetao Sun, Peng Xue, Shuai Tan, Yongling Wu, and Hongyu Zheng. 2022. “Processing and Characterization of Crack-Free 7075 Aluminum Alloys with Elemental Zr Modification by Laser Powder Bed Fusion.” Materials Science in Additive Manufacturing 1 (1): 4. https://doi.org/10.18063/msam.v1i1.4
  • Zdybal, D., L. Pabarcius, A. Laczewski, B. Wyciszkiewicz, A. Zwolak, P. Slawecki, and M. Wyzlinski. 2021. “Investigation of FDM-Printed Open-Framework-Reinforced Helical PEWAX Grains as a Robust: High Regression Hybrid Rocket Fuel.” AIAA Scitech 2021 Forum. https://doi.org/10.2514/6.2021-1247
  • Zeng, G. H., T. Song, Y. H. Dai, H. P. Tang, and M. Yan. 2019. “3D Printed Breathable Mould Steel: Small Micrometer-Sized, Interconnected Pores by Creatively Introducing Foaming Agent to Additive Manufacturing.” Materials & Design 169: 107693. https://doi.org/10.1016/j.matdes.2019.107693
  • Zhang, Z. L., X. Lin, Z. Z. Wang, K. Wu, J. X. Luo, S. H. Fang, C. Y. Zhang, F. Li, and X. L. Yu. 2022a. “Effects of Swirl Injection on the Combustion of a Novel Composite Hybrid Rocket Fuel Grain.” Acta Astronautica 199: 174–182. https://doi.org/10.1016/j.actaastro.2022.07.027
  • Zhang, Xuhui, Zhen Xiao, Wenhui Yu, C. Chua, Lihua Zhu, Zongshen Wang, Peng Xue, Shuai Tan, Yongling Wu, and Hongyu Zheng. 2022b. “Influence of Erbium Addition on the Defects of Selective Laser-Melted 7075 Aluminium Alloy.” Virtual and Physical Prototyping 17 (2): 406–418. https://doi.org/10.1080/17452759.2021.1990358
  • Zhao, Y., K. Aoyagi, K. Yamanak, and Akihiko Chiba. 2020. “Role of Operating and Environmental Conditions in Determining Molten Pool Dynamics During Electron Beam Melting and Selective Laser Melting.” Additive Manufacturing 36: 101559. https://doi.org/10.1016/j.addma.2020.101559
  • Zheng, M., L. Wei, J. Chen, Qiang Zhang, Chongliang Zhong, Xin Lin, and Weidong Huang. 2019. “A Novel Method for the Molten Pool and Porosity Formation Modelling in Selective Laser Melting.” International Journal of Heat and Mass Transfer 140: 1091–1105. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.038