1,594
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Large-scale material extrusion-based additive manufacturing of short carbon fibre-reinforced silicon carbide ceramic matrix composite preforms

, , , , , , , & ORCID Icon show all
Article: e2245801 | Received 23 May 2023, Accepted 02 Aug 2023, Published online: 16 Aug 2023

References

  • Duan S, Matsuda K, Wang T, et al. Microstructures and mechanical properties of a cast Al–Cu–Li alloy during heat treatment procedure. Rare Met. 2021;40:1897–1906. doi:10.1007/s12598-020-01481-7
  • Li W, Sun Y, Hu W, et al. Tribological properties of plasma-sprayed nickel alloy matrix self-lubricating coating at elevated temperatures. Rare Met. 2021;40:1844–1850. doi:10.1007/s12598-020-01426-0
  • Li X, Yan L, Zhang Y, et al. Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength. Ceram Int. 2022;48(7):9788–9796. doi:10.1016/j.ceramint.2021.12.180
  • Zhao D, Guo T, Fan X, et al. Effect of pyrolytic carbon interphase on mechanical properties of mini T800-C/SiC composites. J Adv Ceramics. 2021;10(2):219–226. doi:10.1007/s40145-020-0432-3
  • Wang J, Cao L, Zhang Y, et al. Effect of mass transfer channels on flexural strength of C/SiC composites fabricated by femtosecond laser assisted CVI method with optimized laser power. J Adv Ceram. 2021;10(2):227–236. doi:10.1007/s40145-020-0433-2
  • Zhang Y, Zhang, Hu H, et al. Effect of the surface microstructure of SiC inner coating on the bonding strength and ablation resistance of ZrB2-SiC coating C/C composites. Ceram Int. 2016;42(16):18657–18665. doi:10.1016/j.ceramint.2016.09.003
  • Li Y, Xiao P, Li Z, et al. Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites. Ceram Int. 2016;42(6):6850–6857. doi:10.1016/j.ceramint.2016.01.068
  • Ni Y, Luo R, Luo H. Fabrication and mechanical properties of 3-D Cf/C-SiC-TiC composites prepared by RMI. J Alloys Compd. 2019;798:784–789. doi:10.1016/j.jallcom.2019.05.197
  • Zhang L, Chen Y, He R, et al. Bending behavior of lightweight C/SiC pyramidal lattice core sandwich panels. Int J Mech Sci. 2020a;171:105409. doi:10.1016/j.ijmecsci.2019.105409
  • Shi Y, Kessei F, Friess M, et al. Characterization and modeling of tensile properties of continuous fiber reinforced C/C-SiC composite at high temperatures. J Eur Ceram Soc. 2021;41(5):3061–3071. doi:10.1016/j.jeurceramsoc.2020.09.043
  • Zhang K, Guo X, Cheng Y, et al. TEM study on the morphology and interface microstructure of C/C-SiC composites fabricated by liquid infiltration. Mater Charact. 2021;175:111055. doi:10.1016/j.matchar.2021.111055
  • Duan J, Li Y, Li F, et al. Corrosion behavior of LSI-based 3D needled C/SiC composites subjected to burner rig test. Corros Sci. 2022;197:109982. doi:10.1016/j.corsci.2021.109982
  • Patra N, Al Nasiri N, Jayaseelan DD, et al. Thermal properties of Cf/HfC and Cf/HfC-SiC composites prepared by precursor infiltration and pyrolysis. J Eur Ceram Soc. 2018;38(5):2297–2303. doi:10.1016/j.jeurceramsoc.2017.12.051
  • Yang L, Liu H, Zu M. Enhanced microwave-absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon-rich interphase. J Am Ceram Soc. 2018;101(8):3402–3413. doi:10.1111/jace.15506
  • Wang J, Cao LY, Liu YS, et al. Fabrication of improved flexural strength C/SiC composites via LA-CVI method using optimized spacing of mass transfer channels. J Eur Ceram Soc. 2020;40(8):2828–2833. doi:10.1016/j.jeurceramsoc.2020.02.050
  • Wang J, Zhang Y, Liu Y, et al. Effect of initial density during laser machining assisted CVI process and its influence on strength of C/SiC composites. Ceram Int. 2020;46(8):11743–11746. doi:10.1016/j.ceramint.2020.01.207
  • Luan X, Wang L, Zou Y, et al. Oxidation behavior of C/SiC-SiBCN composites at high temperature. J Eur Ceram Soc. 2019;39(10):3003–3012. doi:10.1016/j.jeurceramsoc.2019.04.025
  • Fu H, Zhu W, Xu Z, et al. Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering. J Alloys Compd. 2019;792:1045–1053. doi:10.1016/j.jallcom.2019.04.129
  • Franchin G, Wahl L, Colombo P. Direct ink writing of ceramic matrix composite structures. J Am Ceram Soc. 2017;100(10):4397–4401. doi:10.1111/jace.15045
  • Lv X, Ye F, Cheng L, et al. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J Eur Ceram Soc. 2019;39(11):3380–3386. doi:10.1016/j.jeurceramsoc.2019.04.043
  • Zhang H, Yang Y, Hu K, et al. Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit Manufac. 2020;34:101199. doi:10.1016/j.addma.2020.101199
  • Zhu W, Fu H, Xu Z, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. J Eur Ceram Soc. 2018;38(14):4604–4613. doi:10.1016/j.jeurceramsoc.2018.06.022
  • Zhang H, Yang Y, Liu B, et al. The preparation of SiC-based ceramics by one novel strategy combined 3D printing technology and liquid silicon infiltration process. Ceram Int. 2019;45:10800–10804. doi:10.1016/j.ceramint.2019.02.154
  • Wu S, Yang L, Wang C, et al. Si/SiC ceramic lattices with a triply periodic minimal surface structure prepared by laser powder bed fusion. Add Manufac. 2022;56:102910. doi:10.1016/j.addma.2022.102910
  • Kuo C, Chua C, Peng P, et al. Microstructure evolution and mechanical property response via 3D printing parameter development of Al–Sc alloy. Virtual Phys Prototyp. 2020;15(1):120–129. doi:10.1080/17452759.2019.1698967
  • Zhang X, Xiao Z, Yu W, et al. Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy. Virtual Phys Prototyp. 2022;17(2):406–418. doi:10.1080/17452759.2021.1990358
  • Li Y, Zhou K, Tan P, et al. Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci. 2018;136:24–35. doi:10.1016/j.ijmecsci.2017.12.001
  • Yu W, Sing S, Chua C, et al. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J Alloys Compd. 2019;792:574–581. doi:10.1016/j.jallcom.2019.04.017
  • Wang W, Bai X, Zhang L, et al. Additive manufacturing of Csf/SiC composites with high fiber content by direct ink writing and liquid silicon infiltration. Ceram Int. 2022;48(3):3895–3903. doi:10.1016/j.ceramint.2021.10.176
  • Channell GM, Zukoski CF. Shear and compressive rheology of aggregated alumina suspensions. AIChE J. 1997;43:1700–1708. doi:10.1002/aic.690430707
  • Costakis WJ, Reschhoff LM, Diaz-Cano AI, et al. Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J Eur Ceram Soc. 2016;36(14):3249–3256. doi:10.1016/j.jeurceramsoc.2016.06.002
  • Lewis JA, Smay JE, Stuecker J, et al. Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc. 2006;89:3599–3609. doi:10.1111/j.1551-2916.2006.01382.x
  • Xiong H, Zhao L, Chen H, et al. 3D SiC containing uniformly dispersed, aligned SiC whiskers: Printability, microstructure and mechanical properties. J Alloys Compd. 2019;809:151824. doi:10.1016/j.jallcom.2019.151824
  • Googan TJ, Kazmer DO. Prediction of interlayer strength in material extrusion additive manufacturing. Addit Manuf. 2020;35:101368. doi:10.1016/j.addma.2020.101368
  • Mei H, Yan Y, Feng L, et al. First printing of continuous fibers into ceramics. J Am Ceram Soc. 2019;102(6):3244–3255. doi:10.1111/jace.16234
  • Chen R, Bratten A, Rittenhouse J, et al. Additive manufacturing of continuous carbon fiber-reinforced SiC ceramic composites with multiple fiber bundles by an extrusion-based technique. Ceram Int. 2023;49(6):9839–9847. doi:10.1016/j.ceramint.2022.11.157
  • Liu Y, Cheng Y, Ma D, et al. Continuous carbon fiber reinforced ZrB2-SiC composites fabricated by direct ink writing combined with low-temperature hot-pressing. J Eur Ceram Soc. 2022;42(9):3699–3707. doi:10.1016/j.jeurceramsoc.2022.03.045.