1,254
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The development of a modular design workflow for 3D printable bioresorbable patient-specific bone scaffolds to facilitate clinical translation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: e2246434 | Received 30 May 2023, Accepted 01 Aug 2023, Published online: 05 Sep 2023

References

  • Laubach M, Suresh S, Herath B, et al. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat. 2022 May;34:73–84. doi: 10.1016/j.jot.2022.04.004.
  • Kobbe P, Laubach M, Hutmacher DW, et al. Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft. Eur J Med Res. 2020 Dec;25(1):70. doi: 10.1186/s40001-020-00471-w.
  • Castrisos G, Gonzalez Matheus I, Sparks D, et al. Regenerative matching axial vascularisation of absorbable 3d-printed scaffold for large bone defects: a first in human series. J Plastic, Reconstructive Aesthetic Surgery: JPRAS. 2022 Jul;75(7):2108–2118. doi: 10.1016/j.bjps.2022.02.057.
  • Schemitsch EH. Size matters: defining critical in bone defect size! J Orthop Trauma. 2017 Oct;315:S20–S22. doi: 10.1097/BOT.0000000000000978.
  • Dahl MT, Morrison S. Segmental bone defects and the history of bone transport. J Orthop Trauma. 2021 Oct;35(Suppl4):S1–S7. doi: 10.1097/BOT.0000000000002124.
  • Kern T. Managing bone defects in the femur with a motorized intramedullary bone transport nail: case review with follow-up. J Orthop Trauma. 2021 Oct;35(Suppl4):S8–S12. doi: 10.1097/BOT.0000000000002120.
  • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000 Dec;21(24):2529–2543. doi: 10.1016/S0142-9612(00)00121-6.
  • Cheng A, Schwartz Z, Kahn A, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B, Rev. 2019 Feb;25(1):14–29. doi: 10.1089/ten.teb.2018.0119.
  • Feng P, Zhao R, Tang W, et al. Structural and functional adaptive artificial bone: materials, fabrications, and properties. Adv Funct Mater. 2023 Jun;33(23):2214726. doi: 10.1002/adfm.v33.23.
  • Laubach M, Hildebrand F, Suresh S, et al. The concept of scaffold-guided bone regeneration for the treatment of long bone defects: current clinical application and future perspective. J Funct Biomater. 2023 Jun;14(7):341. doi: 10.3390/jfb14070341.
  • Lan W, Huang X, Huang D, et al. Progress in 3D printing for bone tissue engineering: a review. J Mater Sci. 2022 Jul;57(27):12685–12709. doi: 10.1007/s10853-022-07361-y.
  • Zhang XY, Fang G, Zhou J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials. 2017 Jan;10(1):50. doi: 10.3390/ma10010050.
  • Zhang L, Yang G, Johnson BN, et al. Three-dimensional (3d) printed scaffold and material selection for bone repair. Acta Biomater. 2019 Jan;84:16–33. doi: 10.1016/j.actbio.2018.11.039.
  • Germaini MM, Belhabib S, Guessasma S, et al. Additive manufacturing of biomaterials for bone tissue engineering – a critical review of the state of the art and new concepts. Prog Mater Sci. 2022 Oct;130:100963. doi: 10.1016/j.pmatsci.2022.100963.
  • Herath B, Suresh S, Downing D, et al. Mechanical and geometrical study of 3D printed voronoi scaffold design for large bone defects. Mater Des. 2021 Dec;212:110224. doi: 10.1016/j.matdes.2021.110224.
  • Wang F, Tankus EB, Santarella F, et al. Fabrication and characterization of PCL/HA filament as a 3D printing material using thermal extrusion technology for bone tissue engineering. Polymers. 2022 Feb;14(4):669. doi: 10.3390/polym14040669.
  • Korn P, Jehn P, Nejati-Rad N, et al. Pitfalls of surgeon-engineer communication and the effect of in-house engineer training during digital planning of patient-specific implants for orbital reconstruction. J Oral Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons. 2022 Apr;80(4):676–681. doi: 10.1016/j.joms.2021.12.003.
  • Minetto R, Volpato N, Stolfi J, et al. An optimal algorithm for 3D triangle mesh slicing. Comput Aided Des Appl. 2017 Nov;92:1–10. doi: 10.1016/j.cad.2017.07.001.
  • Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: hopes, reality and future challenges for clinical applications. Acta Biomater. 2021 Feb;121:1–28. doi: 10.1016/j.actbio.2020.11.039.
  • Vilbrandt T, Pasko A, Vilbrandt C. Fabricating nature. Technoetic Arts. 2009;7(2):165–173. doi: 10.1386/tear.7.2.165/1.
  • Stroud I. Boundary representation modelling techniques. London: Springer; 2006. doi: 10.1007/978-1-84628-616-2.
  • Kambampati S, Jauregui C, Museth K, et al. Geometry design using function representation on a sparse hierarchical data structure. Comput Aided Des Appl. 2021 Apr;133:102989. doi: 10.1016/j.cad.2020.102989.
  • Fryazinov O, Vilbrandt T, Pasko A. Multi-scale space-variant FRep cellular structures. Comput Aided Des Appl. 2013 Jan;45(1):26–34. doi: 10.1016/j.cad.2011.09.007.
  • Cignoni P, Callieri M, Corsini M, et al. MeshLab: an open-source mesh processing tool. 2008.
  • Sharma N, Ostas D, Rotar H, et al. Design and additive manufacturing of a biomimetic customized cranial implant based on voronoi diagram. Front Physiol. 2021 Apr;12:647923. doi: 10.3389/fphys.2021.647923.
  • Chen H, Liu Y, Wang C, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med. 2021 Mar;130:104241. doi: 10.1016/j.compbiomed.2021.104241.
  • Klatt MA, Lovrić J, Chen D, et al. Universal hidden order in amorphous cellular geometries. Nat Commun. 2019 Feb;10(1):811. doi: 10.1038/s41467-019-08360-5.
  • Deering J, Dowling KI, DiCecco LA, et al. Selective voronoi tessellation as a method to design anisotropic and biomimetic implants. J Mech Behav Biomed Mater. 2021 Apr;116:104361. doi: 10.1016/j.jmbbm.2021.104361.
  • Chen W, Dai N, Wang J, et al. Personalized design of functional gradient bone tissue engineering scaffold. J Biomech Eng. 2019 Apr;141:111004. doi: 10.1115/1.4043559.
  • Du Y, Liang H, Xie D, et al. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM). Mater Chem Phys. 2020 Jan;239:121968. doi: 10.1016/j.matchemphys.2019.121968.
  • Chen H, Han Q, Wang C, et al. Porous scaffold design for additive manufacturing in orthopedics: A review. Front Bioeng Biotechnol. 2020 Jun;8:609. doi: 10.3389/fbioe.2020.00609.
  • Gatto ML, Furlani M, Giuliani A, et al. Biomechanical performances of PCL/HA micro- and macro-porous lattice scaffolds fabricated via laser powder bed fusion for bone tissue engineering. Mater Sci Eng C, Materials Biol Appl. 2021 Sep;128:112300. doi: 10.1016/j.msec.2021.112300.
  • Onal E, Frith JE, Jurg M, et al. Mechanical properties and in vitro behavior of additively manufactured and functionally graded Ti6Al4V porous scaffolds. Metals. 2018 Mar;8(4):200. doi: 10.3390/met8040200.
  • Karakoç A. RegionTPMS – region based triply periodic minimal surfaces (TPMS) for 3-D printed multiphase bone scaffolds with exact porosity values. SoftwareX. 2021 Dec;16:100835. doi: 10.1016/j.softx.2021.100835.
  • Shi J, Zhu L, Li L, et al. A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep. 2018 May;8(1):7395. doi: 10.1038/s41598-018-25750-9.
  • Günther F, Wagner M, Pilz S, et al. Design procedure for triply periodic minimal surface based biomimetic scaffolds. J Mech Behav Biomed Mater. 2022 Feb;126:104871. doi: 10.1016/j.jmbbm.2021.104871.
  • Poltue T, Karuna C, Khrueaduangkham S, et al. Design exploration of 3d-printed triply periodic minimal surface scaffolds for bone implants. Int J Mech Sci. 2021 Dec;211:106762. doi: 10.1016/j.ijmecsci.2021.106762.
  • Verma R, Kumar J, Singh NK, et al. Design and analysis of biomedical scaffolds using TPMS-Based porous structures inspired from additive manufacturing. Coatings World. 2022 Jun;12(6):839. doi: 10.3390/coatings12060839.
  • Milovanovic JR, Stojkovic MS, Husain KN, et al. Holistic approach in designing the personalized bone scaffold: the case of reconstruction of large missing piece of mandible caused by congenital anatomic anomaly. J Healthc Eng. 2020 Nov;2020:6689961. doi: 10.1155/2020/6689961.
  • Han HH, Shim JH, Lee H, et al. Reconstruction of complex maxillary defects using patient-specific 3d-printed biodegradable scaffolds. Plastic Reconstructive Surgery Global Open. 2018 Nov;6(11):e1975. doi: 10.1097/GOX.0000000000001975.
  • Park H, Choi JW, Jeong WS. Clinical application of three-dimensional printing of polycaprolactone/beta-tricalcium phosphate implants for cranial reconstruction. J Craniofac Surg. 2022 Mar;33(5):1394–1399. doi: 10.1097/SCS.0000000000008595.
  • Bahraminasab M. Challenges on optimization of 3d-printed bone scaffolds. Biomed Eng Online. 2020 Sep;19(1):69. doi: 10.1186/s12938-020-00810-2.
  • Memon AR, Wang E, Hu J, et al. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants. Expert Rev Med Devices. 2020 Apr;17(4):345–356. doi: 10.1080/17434440.2020.1736040.
  • Koc B, Acar AA, Weightman A, et al. Biomanufacturing of customized modular scaffolds for critical bone defects. CIRP Ann. 2019 Jan;68(1):209–212. doi: 10.1016/j.cirp.2019.04.106.
  • Modi YK, Sanadhya S. Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. J Brazilian Soc Mech Sci Eng. 2018 Oct;40(10):503. doi: 10.1007/s40430-018-1425-9.
  • Burton HE, Peel S, Eggbeer D. Reporting fidelity in the literature for computer aided design and additive manufacture of implants and guides. Addit Manuf. 2018 Oct;23:362–373.
  • Chen X. Parametric design of patient-specific fixation plates for distal femur fractures. Proc Inst Mech Eng Part H, J Eng Med. 2018 Sep;232(9):901–911. doi: 10.1177/0954411918793668.
  • Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing. Maxillofac Plast Reconstr Surg. 2018 Dec;40(1):2. doi: 10.1186/s40902-018-0141-9.
  • Shrivastava A, Jain NK, Salhotra R. Modeling of custom patient-specific implants of different knee joints components considering different materials. In: Advancement in materials processing technology. Springer Singapore; 2022. p. 229–238. doi: 10.1007/978-981-16-3297-6_23.
  • Chae MP, Chung RD, Smith JA, et al. The accuracy of clinical 3D printing in reconstructive surgery: literature review and in vivo validation study. Gland Surg. 2021 Jul;10(7):2293–2303. doi: 10.21037/gs.
  • Valding B, Zrounba H, Martinerie S, et al. Should you buy a three-dimensional printer? A study of an orbital fracture. J Craniofac Surg. 2018 Oct;29(7):1925–1927. doi: 10.1097/SCS.0000000000005048.
  • Caetano I, Santos L, Leitão A. Computational design in architecture: defining parametric, generative, and algorithmic design. Front Archit Res. 2020 Jun;9(2):287–300. doi: 10.1016/j.foar.2019.12.008.
  • Ghadai S, Jignasu A, Krishnamurthy A. Direct 3D printing of multi-level voxel models. Additive Manuf. 2021 Apr;40:101929. doi: 10.1016/j.addma.2021.101929.
  • Pasko A, Adzhiev V, Sourin A, et al. Function representation in geometric modeling: concepts, implementation and applications. Vis Comput. 1995 Aug;11(8):429–446. doi: 10.1007/BF02464333.
  • Yngve G, Turk G. Robust creation of implicit surfaces from polygonal meshes. IEEE Trans Vis Comput Graph. 2002 Oct;8(4):346–359. doi: 10.1109/TVCG.2002.1044520.
  • Duan Z, Yang Q, Meng X, et al. Detailed voxel-based implicit modeling with local boolean composition of discrete level sets. IEEE Access. 2020;8:48376–48385. doi: 10.1109/Access.6287639.
  • Azernikov S, Fischer A. Anisotropic meshing of implicit surfaces. In: International Conference on Shape Modeling and Applications 2005 (SMI' 05). 2005 Jun. 94–103. Cambridge, MA, USA: IEEE. doi: 10.1109/SMI.2005.5.
  • Museth K. VDB: high-resolution sparse volumes with dynamic topology. ACM Trans Graph. 2013;32(3):1–22. doi: 10.1145/2487228.2487235.
  • Schaefer S, Warren J. Dual marching cubes: primal contouring of dual grids. In: Proceedings 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. 2004 Oct. 70–76. Seoul, Korea (South): IEEE. doi: 10.1109/PCCGA.2004.1348336.
  • Oenning R. Ryein/Dendro: Volumetric modeling for grasshopper built on top of openvdb [Internet]. [cited 2023 Jul 2]. Available from: https://github.com/ecrlabs/dendro
  • Fugier D. Dalefugier/Moose: Demonstrates how to share a common library with both a C++ and a C# plug-in. [Internet]. [cited 2023 Jul 2]. Available from: https://github.com/dalefugier/Moose
  • Perez-Boerema F, Barzegari M, Geris L. A flexible and easy-to-use open-source tool for designing functionally graded 3D porous structures. Virtual Phys Prototyp. 2022 Jul;17(3):682–699. doi: 10.1080/17452759.2022.2048956.