2,564
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Modelling and simulation of metal additive manufacturing processes with particle methods: A review

ORCID Icon & ORCID Icon
Article: e2274494 | Received 16 Aug 2023, Accepted 15 Oct 2023, Published online: 08 Nov 2023

References

  • Standard A. Standard terminology for additive manufacturing technologies. ASTM Int F2792-12a. 2012;10.04:1–9.
  • Gibson I, Rosen D, Stucker B, et al. Additive manufacturing technologies. Vol. 17. Cham (Switzerland): Springer; 2021.
  • Wohlers T. Wohlers report. Wohlers Associates Inc; 2014.
  • King W, Anderson AT, Ferencz RM, et al. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol. 2015;31(8):957–968. doi: 10.1179/1743284714Y.0000000728
  • Galantucci LM, Guerra MG, Dassisti M, et al. Additive manufacturing: new trends in the 4th industrial revolution. In: Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing: AMP 4; Springer; 2019. p. 153–169.
  • Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, et al. The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl Sci. 2019;9(18):3865. doi: 10.3390/app9183865
  • Koenig B. Toyota using AI, 3D printing as tools. 2022.
  • Campbell I, Diegel O, Kowen J, et al. Wohlers report 2018: 3D printing and additive manufacturing state of the industry: annual worldwide progress report. 2018.
  • King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015 Dec;2(4):041304. doi: 10.1063/1.4937809
  • Yan W, Lin S, Kafka OL, et al. Modeling process-structure-property relationships for additive manufacturing. Front Mech Eng. 2018;13(4):482–492. doi: 10.1007/s11465-018-0505-y
  • Yadroitsev I. Selective laser melting: direct manufacturing of 3D-objects by selective laser melting of metal powders. Saint-Etienne: LAP Lambert Academic Publishing; 2009.
  • Nie P, Ojo O, Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 2014;77:85–95. doi: 10.1016/j.actamat.2014.05.039
  • Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Addit Manuf. 2016;9:14–24.
  • Khairallah SA, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol. 2014;214(11):2627–2636. doi: 10.1016/j.jmatprotec.2014.06.001
  • Heeling T, Cloots M, Wegener K. Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf. 2017;14:116–125.
  • Wang Z, Denlinger E, Michaleris P, et al. Residual stress mapping in inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des. 2017;113:169–177. doi: 10.1016/j.matdes.2016.10.003
  • Williams RJ, Davies CM, Hooper PA. A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit Manuf. 2018;22:416–425.
  • Verma R, Kumar P, Jayaganthan R, et al. Extended finite element simulation on tensile, fracture toughness and fatigue crack growth behaviour of additively manufactured Ti6Al4V alloy. Theoret Appl Fract Mech. 2022;117:103163. doi: 10.1016/j.tafmec.2021.103163
  • Markl M, Körner C. Multiscale modeling of powder bed–based additive manufacturing. Annu Rev Mater Res. 2016;46(1):93–123. doi: 10.1146/matsci.2016.46.issue-1
  • Meier C, Penny RW, Zou Y, et al. Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentation. Ann Rev Heat Transf. 2017;20(1):241–316. doi: 10.1615/AnnualRevHeatTransfer.v20
  • Francois MM, Sun A, King WE, et al. Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr Opin Solid State Mater Sci. 2017;21(4):198–206. doi: 10.1016/j.cossms.2016.12.001
  • Wei H, Mukherjee T, Zhang W, et al. Mechanistic models for additive manufacturing of metallic components. Prog Mater Sci. 2021;116:100703. doi: 10.1016/j.pmatsci.2020.100703
  • Luo Z, Zhao Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Addit Manuf. 2018;21:318–332.
  • Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit Manuf. 2021;47:102278.
  • Li E, Zhou Z, Wang L, et al. Particle scale modelling of powder recoating and melt pool dynamics in laser powder bed fusion additive manufacturing: a review. Powder Technol. 2022;409:117789. doi: 10.1016/j.powtec.2022.117789
  • Wirth F. Process understanding, modeling and predictive simulation of laser cladding. Zurich (Switzerland): ETH Zurich; 2018.
  • Cook PS, Murphy AB. Simulation of melt pool behaviour during additive manufacturing: underlying physics and progress. Addit Manuf. 2020 Jan;31:100909.
  • Steen WM, Mazumder J. Laser material processing. London: Springer-Verlag London Ltd; 2010.
  • Gu DD, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133–164. doi: 10.1179/1743280411Y.0000000014
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014
  • Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100(2):335–354. doi: 10.1016/0021-9991(92)90240-Y
  • Chow T. Wetting of rough surfaces. J Phys Condens Matter. 1998;10(27):L445–L451. doi: 10.1088/0953-8984/10/27/001.
  • Semak V, Matsunawa A. The role of recoil pressure in energy balance during laser materials processing. J Phys D: Appl Phys. 1997;30(18):2541–2552. doi: 10.1088/0022-3727/30/18/008
  • Klassen A, Scharowsky T, Körner C. Evaporation model for beam based additive manufacturing using free surface lattice boltzmann methods. J Phys D Appl Phys. 2014;47(27):275303. doi: 10.1088/0022-3727/47/27/275303
  • Klassen A, Forster VE, Körner C. A multi-component evaporation model for beam melting processes. Model Simul Mater Sci Eng. 2017;25(2):025003. doi: 10.1088/1361-651X/aa5289
  • Weirather J, Rozov V, Wille M, et al. A smoothed particle hydrodynamics model for laser beam melting of Ni-based alloy 718. Comput Math Appl. 2019;78(7):2377–2394.
  • Gusarov A, Yadroitsev I, Bertrand P, et al. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. ASME J Heat Transf. 2009;131(7):1–10. doi: 10.1115/1.3109245
  • Hashemi H, Sliepcevich C. A numerical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Prog Symp Ser. 1967;63:34–41.
  • Kaufman L, Bernstein H. Computer calculation of phase diagrams. with special reference to refractory metals. 1970.
  • Ganeriwala R, Zohdi TI. A coupled discrete element-finite difference model of selective laser sintering. Granul Matter. 2016;18(2):21. doi: 10.1007/s10035-016-0626-0
  • Marshall P. Austenitic stainless steels: microstructure and mechanical properties. 1984.
  • Russell M, Souto-Iglesias A, Zohdi T. Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng. 2018;341:163–187. doi: 10.1016/j.cma.2018.06.033
  • Mills KC. Recommended values of thermophysical properties for selected commercial alloys. Cambridge (England): Woodhead Publishing; 2002.
  • Sahoo P, Debroy T, McNallan M. Surface tension of binary metal–surface active solute systems under conditions relevant to welding metallurgy. Metall Trans B. 1988;19(3):483–491. doi: 10.1007/BF02657748
  • He X, Fuerschbach P, DebRoy T. Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys D Appl Phys. 2003;36(12):1388–1398. doi: 10.1088/0022-3727/36/12/306
  • Wessels H, Weißenfels C, Wriggers P. Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput Methods Appl Mech Eng. 2018;339:91–114. doi: 10.1016/j.cma.2018.04.042
  • Wessels H. Thermo-mechanical modeling for selective laser melting. Institut für Kontinuumsmechanik, Gottfried Wilhelm Leibniz Universität Hannover. 2019.
  • Chawla T, Graff D, Borg R, et al. Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Eng Des. 1981;67(1):57–74. doi: 10.1016/0029-5493(81)90155-2
  • Goldak JA, Akhlaghi M. Computational welding mechanics. New York (NY): Springer Science & Business Media; 2005.
  • Karditsas PJ, Baptiste M-J. Thermal and structural properties of fusion related materials. UKAEA Government Division; 1995. (Tech. rep.).
  • Hodge N, Ferencz R, Solberg J. Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech. 2014;54(1):33–51. doi: 10.1007/s00466-014-1024-2
  • Neira-Arce A. Thermal modeling and simulation of electron beam melting for rapid prototyping on Ti6Al4V alloys. Ann Arbor (MI): ProQuest LLC; 2012.
  • Andreotta R, Ladani L, Brindley W. Finite element simulation of laser additive melting and solidification of inconel 718 with experimentally tested thermal properties. Finite Elem Anal Des. 2017;135:36–43. doi: 10.1016/j.finel.2017.07.002
  • Chen H, Wei Q, Wen S, et al. Flow behavior of powder particles in layering process of selective laser melting: numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf. 2017;123:146–159. doi: 10.1016/j.ijmachtools.2017.08.004
  • You Y, Zhao Y. Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 2018;331:179–191. doi: 10.1016/j.powtec.2018.03.017
  • Spierings AB, Voegtlin M, Bauer T, et al. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Progress Addit Manuf. 2016;1(1–2):9–20. doi: 10.1007/s40964-015-0001-4
  • Dai L, Chan Y, Vastola G, et al. Characterizing the intrinsic properties of powder–a combined discrete element analysis and hall flowmeter testing study. Adv Powder Technol. 2021;32(1):80–87. doi: 10.1016/j.apt.2020.11.015
  • Nguyen QB, Nai MLS, Zhu Z, et al. Characteristics of inconel powders for powder-bed additive manufacturing. Engineering. 2017;3(5):695–700. doi: 10.1016/J.ENG.2017.05.012
  • Tan Y, Zhang J, Li X, et al. Comprehensive evaluation of powder flowability for additive manufacturing using principal component analysis. Powder Technol. 2021;393:154–164. doi: 10.1016/j.powtec.2021.07.069
  • Lumay G, Boschini F, Traina K, et al. Measuring the flowing properties of powders and grains. Powder Technol. 2012;224:19–27. doi: 10.1016/j.powtec.2012.02.015
  • Cordova L, Chen Z. Impact of powder recoating speed on built properties in PBF-LB process. Procedia CIRP. 2022;115:125–129. doi: 10.1016/j.procir.2022.10.061
  • Zhang Z, Ge P, Li T, et al. Electromagnetic wave-based analysis of laser–particle interactions in directed energy deposition additive manufacturing. Addit Manuf. 2020;34:101284.
  • Yao X, Zhang Z. Laser-particle interaction-based heat source model of laser powder bed fusion additive manufacturing. Opt Laser Technol. 2022;155:108402. doi: 10.1016/j.optlastec.2022.108402
  • Zhang Z, Ge P, Li J, et al. Laser–particle interaction-based analysis of powder particle effects on temperatures and distortions in directed energy deposition additive manufacturing. J Therm Stresses. 2021;44(9):1068–1095. doi: 10.1080/01495739.2021.1954572
  • Yao X, Li J, Wang Y, et al. Experimental and numerical studies of nozzle effect on powder flow behaviors in directed energy deposition additive manufacturing. Int J Mech Sci. 2021;210:106740. doi: 10.1016/j.ijmecsci.2021.106740
  • Gao X, Yao X, Niu F, et al. The influence of nozzle geometry on powder flow behaviors in directed energy deposition additive manufacturing. Adv Powder Technol. 2022;33(3):103487. doi: 10.1016/j.apt.2022.103487
  • Zohdi TI. Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput Mech. 2014 Jul;54(1):171–191. doi: 10.1007/s00466-014-1012-6
  • Zohdi T. Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput Methods Appl Mech Eng. 2006;195(41–43):5813–5830. doi: 10.1016/j.cma.2005.04.023
  • Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Prod Eng. 2010;4(1):35–45. doi: 10.1007/s11740-009-0192-y
  • Körner C, Attar E, Heinl P. Mesoscopic simulation of selective beam melting processes. Comp Part Mech. 2011;6:978–987.
  • Panwisawas C, Qiu C, Anderson MJ, et al. Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci. 2017;126:479–490. doi: 10.1016/j.commatsci.2016.10.011
  • Zohdi TI. Rapid simulation of laser processing of discrete particulate materials. Arch Comput Methods Eng. 2013;20(4):309–325. doi: 10.1007/s11831-013-9092-6
  • Qiu C, Panwisawas C, Ward M, et al. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 2015;96:72–79. doi: 10.1016/j.actamat.2015.06.004
  • Panwisawas C, Sovani Y, Turner RP, et al. Modelling of thermal fluid dynamics for fusion welding. J Mater Process Technol. 2018;252:176–182. doi: 10.1016/j.jmatprotec.2017.09.019
  • Yan W, Smith J, Ge W, et al. Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech. 2015;56(2):265–276. doi: 10.1007/s00466-015-1170-1
  • Zohdi T. On the optical thickness of disordered particulate media. Mech Mater. 2006;38(8–10):969–981. doi: 10.1016/j.mechmat.2005.06.025
  • Zacarias M, Malacara-Hernández D, Malacara-Hernández Z. Handbook of optical design. Boca Raton (FL): CRC Press; 2003.
  • Yan W, Ge W, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater. 2017;134:324–333. doi: 10.1016/j.actamat.2017.05.061
  • Yan W, Lin S, Kafka OL, et al. Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Comput Mech. 2018;61(5):521–541. doi: 10.1007/s00466-018-1539-z
  • Ki H, Mazumder J, Mohanty PS. Modeling of laser keyhole welding: part I. Mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans A. 2002;33(6):1817–1830. doi: 10.1007/s11661-002-0190-6
  • Otto A, Koch H, Vazquez RG. Multiphysical simulation of laser material processing. Phys Proc. 2012;39:843–852. doi: 10.1016/j.phpro.2012.10.109
  • Gürtler F, Karg M, Dobler M, et al. Influence of powder distribution on process stability in laser beam melting: analysis of melt pool dynamics by numerical simulations. In: International Solid Freeform Fabrication Symposium; Austin (TX). 2014. p. 1099–1117.
  • Lee Y, Zhang W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf. 2016;12:178–188.
  • Liu B, Fang G, Lei L, et al. A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM). Appl Math Model. 2020;79:506–520. doi: 10.1016/j.apm.2019.10.049
  • Hu H, Eberhard P. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comput Particle Mech. 2017;4(4):473–486. doi: 10.1007/s40571-016-0140-5
  • Wessels H, Bode T, Weißenfels C, et al. Investigation of heat source modeling for selective laser melting. Comput Mech. 2019 May;63(5):949–970. doi: 10.1007/s00466-018-1631-4
  • Gürtler F-J, Karg M, Leitz K-H, et al. Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method. Phys Procedia. 2013;41:881–886. doi: 10.1016/j.phpro.2013.03.162
  • Megahed M, Mindt H-W, N'Dri N, et al. Metal additive-manufacturing process and residual stress modeling. Integ Mater Manuf Innov. 2016;5(1):61–93. doi: 10.1186/s40192-016-0047-2
  • Liu M, Liu G. Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng. 2010;17(1):25–76. doi: 10.1007/s11831-010-9040-7
  • Shadloo MS, Oger G, Le Touzé D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids. 2016;136:11–34. doi: 10.1016/j.compfluid.2016.05.029
  • Violeau D, Rogers BD. Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future. J Hydraul Res. 2016;54(1):1–26. doi: 10.1080/00221686.2015.1119209
  • Fürstenau J-P, Wessels H, Weißenfels C, et al. Generating virtual process maps of slm using powder-scale sph simulations. Comput Part Mech. 2020;7(4):655–677. doi: 10.1007/s40571-019-00296-3
  • Fan Z, Wang H, Huang Z, et al. A lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals. Int J Numer Methods Eng. 2021;122(2):483–514. doi: 10.1002/nme.v122.2
  • Dao MH, Lou J. Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics. Comput Methods Appl Mech Eng. 2021;373:113491. doi: 10.1016/j.cma.2020.113491
  • Dao MH, Lou J. Simulations of directed energy deposition additive manufacturing process by smoothed particle hydrodynamics methods. Int J Adv Manuf Technol. 2022;120(7-8):4755–4774. doi: 10.1007/s00170-022-09050-1
  • Meier C, Fuchs SL, Hart AJ, et al. A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling. Comput Methods Appl Mech Eng. 2021;381:113812. doi: 10.1016/j.cma.2021.113812
  • Fuchs SL, Praegla PM, Cyron CJ, et al. A versatile sph modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion. Eng Comput. 2022;38:4853–4877. doi: 10.1007/s00366-022-01724-4
  • Körner C, Attar E, Heinl P. Mesoscopic simulation of selective beam melting processes. J Mater Process Technol. 2011;211(6):978–987. doi: 10.1016/j.jmatprotec.2010.12.016
  • Maeshima T, Kim Y, Zohdi TI. Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method. Comput Part Mech. 2021;8(3):613–623. doi: 10.1007/s40571-020-00358-x
  • Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Geotechnique. 1979;29(1):47–65. doi: 10.1680/geot.1979.29.1.47
  • Monaghan J. Sph and riemann solvers. J Comput Phys. 1997;136(2):298–307. doi: 10.1006/jcph.1997.5732
  • Lucy LB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977;82:1013–1024. doi: 10.1086/112164
  • Liu G-R, Liu MB. Smoothed particle hydrodynamics: a meshfree particle method. Singapore: World Scientific; 2003.
  • Afrasiabi M, Roethlin M, Wegener K. Contemporary meshfree methods for three dimensional heat conduction problems. Arch Comput Methods Eng. 2020 Nov;27(5):1413–1447. doi: 10.1007/s11831-019-09355-7
  • Li B, Habbal F, Ortiz M. Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng. 2010;83(12):1541–1579. doi: 10.1002/nme.2869
  • Weißenfels C, Wriggers P. Stabilization algorithm for the optimal transportation meshfree approximation scheme. Comput Methods Appl Mech Eng. 2018;329:421–443. doi: 10.1016/j.cma.2017.09.031
  • Wang H, Liao H, Fan Z, et al. The hot optimal transportation meshfree (hotm) method for materials under extreme dynamic thermomechanical conditions. Comput Methods Appl Mech Eng. 2020;364:112958. doi: 10.1016/j.cma.2020.112958
  • Chen H, Wei Q, Zhang Y, et al. Powder-spreading mechanisms in powder-bed-based additive manufacturing: experiments and computational modeling. Acta Mater. 2019;179:158–171. doi: 10.1016/j.actamat.2019.08.030
  • Han Q, Gu H, Setchi R. Discrete element simulation of powder layer thickness in laser additive manufacturing. Powder Technol. 2019;352:91–102. doi: 10.1016/j.powtec.2019.04.057
  • Meier C, Weissbach R, Weinberg J, et al. Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J Mater Process Technol. 2019;266:484–501. doi: 10.1016/j.jmatprotec.2018.10.037
  • Dai L, Chan Y, Vastola G, et al. Discrete element simulation of powder flow in revolution powder analyser: effects of shape factor, friction and adhesion. Powder Technol. 2022;408:117790. doi: 10.1016/j.powtec.2022.117790
  • Yim S, Bian H, Aoyagi K, et al. Spreading behavior of Ti48Al2Cr2Nb powders in powder bed fusion additive manufacturing process: experimental and discrete element method study. Addit Manuf. 2022;49:102489.
  • Lee Y, Gurnon AK, Bodner D, et al. Effect of particle spreading dynamics on powder bed quality in metal additive manufacturing. Integ Mater Manuf Innovat. 2020;9(4):410–422. doi: 10.1007/s40192-020-00193-1
  • Ganesan VV, Amerinatanzi A, Jain A. Discrete element modeling (DEM) simulations of powder bed densification using horizontal compactors in metal additive manufacturing. Powder Technol. 2022;405:117557. doi: 10.1016/j.powtec.2022.117557
  • Sehhat MH, Mahdianikhotbesara A. Powder spreading in laser-powder bed fusion process. Granul Matter. 2021;23(4):89. doi: 10.1007/s10035-021-01162-x
  • Lee Y, Nandwana P, Zhang W. Dynamic simulation of powder packing structure for powder bed additive manufacturing. Int J Adv Manuf Technol. 2018;96(1-4):1507–1520. doi: 10.1007/s00170-018-1697-3
  • Nan W, Pasha M, Bonakdar T, et al. Jamming during particle spreading in additive manufacturing. Powder Technol. 2018;338:253–262. doi: 10.1016/j.powtec.2018.07.030
  • Nan W, Ghadiri M. Numerical simulation of powder flow during spreading in additive manufacturing. Powder Technol. 2019;342:801–807. doi: 10.1016/j.powtec.2018.10.056
  • Fouda YM, Bayly AE. A dem study of powder spreading in additive layer manufacturing. Granul Matter. 2020;22(1):1–18. doi: 10.1007/s10035-019-0971-x
  • Yim S, Bian H, Aoyagi K, et al. Effect of powder morphology on flowability and spreading behavior in powder bed fusion additive manufacturing process: a particle-scale modeling study. Addit Manuf. 2023;72:103612.
  • Bouabbou A, Vaudreuil S. Numerical modelling of SS316L powder flowability for laser powder-bed fusion. Arch Mater Sci Eng. 2023;120(1):22–29. doi: 10.5604/18972764
  • Yan Z, Wilkinson SK, Stitt EH, et al. Investigating mixing and segregation using discrete element modelling (DEM) in the freeman FT4 rheometer. Int J Pharm. 2016;513(1–2):38–48. doi: 10.1016/j.ijpharm.2016.08.065
  • Wilkinson S, Turnbull S, Yan Z, et al. A parametric evaluation of powder flowability using a freeman rheometer through statistical and sensitivity analysis: a discrete element method (DEM) study. Comput Chem Eng. 2017;97:161–174. doi: 10.1016/j.compchemeng.2016.11.034
  • Steuben JC, Iliopoulos AP, Michopoulos JG. Discrete element modeling of particle-based additive manufacturing processes. Comput Methods Appl Mech Eng. 2016;305:537–561. doi: 10.1016/j.cma.2016.02.023
  • Yan W, Qian Y, Ge W, et al. Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des. 2018;141:210–219. doi: 10.1016/j.matdes.2017.12.031
  • Chen H, Sun Y, Yuan W, et al. A review on discrete element method simulation in laser powder bed fusion additive manufacturing. Chin J Mech Eng Addit Manuf Front. 2022;1:100017.
  • Ma H, Zhou L, Liu Z, et al. A review of recent development for the cfd-dem investigations of non-spherical particles. Powder Technol. 2022;412:117972. doi: 10.1016/j.powtec.2022.117972
  • Rong D, Horio M. Dem simulation of char combustion in a fluidized bed. In: Second International Conference on CFD in the Minerals and Process Industries CSIRO; Melbourne, Australia; 1999. p. 65–70.
  • Zhou Z, Yu A, Zulli P. A new computational method for studying heat transfer in fluid bed reactors. Powder Technol. 2010;197(1–2):102–110. doi: 10.1016/j.powtec.2009.09.002
  • Peng Z, Doroodchi E, Moghtaderi B. Heat transfer modelling in discrete element method (dem)-based simulations of thermal processes: theory and model development. Prog Energy Combust Sci. 2020;79:100847. doi: 10.1016/j.pecs.2020.100847
  • Liu S, Liu J, Chen J, et al. Influence of surface tension on the molten pool morphology in laser melting. Int J Therm Sci. 2019;146:106075. doi: 10.1016/j.ijthermalsci.2019.106075
  • Afrasiabi M, Lüthi C, Bambach M, et al. Multi-resolution sph simulation of a laser powder bed fusion additive manufacturing process. Appl Sci. 2021;11(7):1. doi: 10.3390/app11072962
  • Afrasiabi M, Lüthi C, Bambach M, et al. Smoothed particle hydrodynamics modeling of the multi-layer laser powder bed fusion process. Procedia CIRP. 2022;107:276–282. doi: 10.1016/j.procir.2022.04.045
  • Liu S, Liu J, Qi L, et al. Simulation of the temperature distribution and solidified bead in single-pass selective laser melting using a mesh-free method. J Appl Phys. 2019;126(13):133104. doi: 10.1063/1.5096041
  • Qiu Y, Niu X, Song T, et al. Three-dimensional numerical simulation of selective laser melting process based on sph method. J Manuf Process. 2021;71:224–236. doi: 10.1016/j.jmapro.2021.09.018
  • Meier C, Fuchs SL, Much N, et al. Physics-based modeling and predictive simulation of powder bed fusion additive manufacturing across length scales. GAMM-Mitteilungen. 2021;44(3):e202100014. doi: 10.1002/gamm.v44.3
  • Park CY, Zohdi TI. Numerical modeling of thermo-mechanically induced stress in substrates for droplet-based additive manufacturing processes. J Manuf Sci Eng. 2019;141(6):061001. doi: 10.1115/1.4043254
  • Trautmann M, Hertel M, Füssel U. Numerical simulation of TIG weld pool dynamics using smoothed particle hydrodynamics. Int J Heat Mass Transf. 2017;115:842–853. doi: 10.1016/j.ijheatmasstransfer.2017.08.060
  • Afrasiabi M, Keller D, Lüthi C, et al. Effect of process parameters on melt pool geometry in laser powder bed fusion of metals: a numerical investigation. Procedia CIRP. 2022;113:378–384. doi: 10.1016/j.procir.2022.09.187
  • Lüthi C, Afrasiabi M, Bambach M. An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing. Comput Math Appl. 2023;139:7–27.
  • Fan Z, Li B. Meshfree simulations for additive manufacturing process of metals. Integr Mater Manuf Innov. 2019;8(2):144–153. doi: 10.1007/s40192-019-00131-w
  • Wessels H, Bode T, Weißenfels C, et al. Investigation of heat source modeling for selective laser melting. Comput Mech. 2019;63(5):949–970. doi: 10.1007/s00466-018-1631-4
  • He X, Luo L-S. A priori derivation of the lattice Boltzmann equation. Phys Rev E. 1997;55(6):R6333–R6336. doi: 10.1103/PhysRevE.55.R6333
  • Ammer R, Markl M, Ljungblad U, et al. Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl. 2014;67(2):318–330. doi: 10.1016/j.camwa.2013.10.001
  • Miyanaji H, Zhang S, Yang L. A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process. Int J Mach Tools Manuf. 2018;124:1–11. doi: 10.1016/j.ijmachtools.2017.09.001
  • Deng H, Huang Y, Wu S, et al. Binder jetting additive manufacturing: three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. J Manuf Process. 2022;74:365–373. doi: 10.1016/j.jmapro.2021.12.019
  • Yang Z, Zhang Y, Yan W. High-fidelity modeling of binder-powder interactions in binder jetting: binder flow and powder dynamics. Acta Mater. 2023;260:119298. doi: 10.1016/j.actamat.2023.119298
  • Wimmer A, Yalvac B, Zoeller C, et al. Experimental and numerical investigations of in situ alloying during powder bed fusion of metals using a laser beam. Metals. 2021;11(11):1842. doi: 10.3390/met11111842
  • Flow-3D A. FlOW-3D am. [Accessed 2023 July 10].
  • Pryor RW. Multiphysics modeling using COMSOL 5 and MATLAB. Mercury learning and information. 2021.
  • De Vaucorbeil A, Nguyen VP, Sinaie S, et al. Material point method after 25 years: theory, implementation, and applications. Adv Appl Mech. 2020;53:185–398. doi: 10.1016/bs.aams.2019.11.001
  • Oñate E, Idelsohn SR, Del Pin F, et al. The particle finite element method–an overview. Int J Comput Methods. 2004;01(02):267–307. doi: 10.1142/S0219876204000204
  • Zhang D, Rodriguez J, Ye X, et al. A particle finite element method for additive manufacturing simulations. J Comput Inf Sci Eng. 2023;23(5):051008. doi: 10.1115/1.4062143
  • Chen J, Beraun J, Carney T. A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng. 1999;46(2):231–252. doi: 10.1002/(ISSN)1097-0207
  • Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int J Numer Methods Fluids. 1995;20(8-9):1081–1106. doi: 10.1002/fld.v20:8/9
  • Fatehi R, Manzari M. Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl. 2011;61(2):482–498.
  • Afrasiabi M, Wegener K. 3D thermal simulation of a laser drilling process with meshfree methods. J Manuf Mater Process. 2020 Jun;4:58.
  • Yu T, Zhao J. Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput Methods Appl Mech Eng. 2021;377:113707. doi: 10.1016/j.cma.2021.113707
  • Vignjevic R, Reveles JR, Campbell J. SPH in a total lagrangian formalism. CMC-Tech Sci Press. 2006;4(3):181.
  • Islam MRI, Peng C. A total lagrangian sph method for modelling damage and failure in solids. Int J Mech Sci. 2019;157–158:498–511. doi: 10.1016/j.ijmecsci.2019.05.003
  • Wang L, Xu F, Yang Y. An improved total lagrangian SPH method for modeling solid deformation and damage. Eng Anal Bound Elem. 2021;133:286–302. doi: 10.1016/j.enganabound.2021.09.010
  • Hu X, Adams NA. An incompressible multi-phase SPH method. J Comput Phys. 2007;227(1):264–278. doi: 10.1016/j.jcp.2007.07.013
  • Yu T, Zhao J. Quantitative simulation of selective laser melting of metals enabled by new high-fidelity multiphase, multiphysics computational tool. Comput Methods Appl Mech Eng. 2022;399:115422. doi: 10.1016/j.cma.2022.115422
  • Cummins S, Cleary PW, Delaney G, et al. A coupled dem/sph computational model to simulate microstructure evolution in Ti-6Al-4V laser powder bed fusion processes. Metals. 2021;11(6):858. doi: 10.3390/met11060858
  • Cao L, Guan W. Simulation and analysis of LPBF multi-layer single-track forming process under different particle size distributions. Int J Adv Manuf Technol. 2021;114(7-8):2141–2157. doi: 10.1007/s00170-021-06987-7
  • Mehrpouya M, Tuma D, Vaneker T, et al. Multimaterial powder bed fusion techniques. Rapid Prototyp J. 2022;28(11):1–19. doi: 10.1108/RPJ-01-2022-0014
  • Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17(2):329–365. doi: 10.1080/17452759.2022.2028343
  • Feenstra D, Banerjee R, Fraser H, et al. Critical review of the state of the art in multi-material fabrication via directed energy deposition. Curr Opin Solid State Mater Sci. 2021;25(4):100924. doi: 10.1016/j.cossms.2021.100924
  • Tang C, Yao L, Du H. Computational framework for the simulation of multi material laser powder bed fusion. Int J Heat Mass Transf. 2022;191:122855. doi: 10.1016/j.ijheatmasstransfer.2022.122855
  • Li W, Kishore M, Zhang R, et al. Comprehensive studies of SS316L/IN718 functionally gradient material fabricated with directed energy deposition: multi-physics & multi-materials modelling and experimental validation. Addit Manuf. 2023;61:103358.
  • Küng VE, Scherr R, Markl M, et al. Multi-material model for the simulation of powder bed fusion additive manufacturing. Comput Mater Sci. 2021;194:110415. doi: 10.1016/j.commatsci.2021.110415
  • Zhu Q, Liu Z, Yan J. Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput Mech. 2021;67:619–635. doi: 10.1007/s00466-020-01952-9
  • Hemmasian A, Ogoke F, Akbari P, et al. Surrogate modeling of melt pool temperature field using deep learning. Addit Manuf Lett. 2023;5:100123. doi: 10.1016/j.addlet.2023.100123