1,236
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exploring carbon sequestration potential through 3D concrete printing

ORCID Icon, , , , &
Article: e2277347 | Received 11 Sep 2023, Accepted 24 Oct 2023, Published online: 08 Nov 2023

References

  • Le Quéré C, Jackson R, Jones M, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat Clim Change. 2020;10:647–653. doi:10.1038/s41558-020-0797-x
  • Sandeep BGB. Reduction of greenhouse gas emission by carbon trapping concrete using carboncure technology. Appl J Environ Eng Sci. 2021;7(3):7–317. doi:10.48422/IMIST.PRSM/ajees-v7i3.28111
  • Linden LZ. (2017). “Energy analysis for producing low carbon-footprint cementitious building material,” [Online]. https://escholarship.org/uc/item/5g4321ch#main.
  • Nocito F, Dibenedetto A. Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Curr Opin Green Sustain Chem. 2020;21:34–43. doi:10.1016/j.cogsc.2019.10.002
  • Zhang S, DePaolo DJ. Rates of CO2 Mineralization in geological carbon storage. Acc Chem Res. Sep 2017;50(9):2075–2084. doi:10.1021/acs.accounts.7b00334
  • National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Ocean Studies Board; Board on Chemical Sciences and Technology; Board on Earth Sciences and Resources; Board on Agriculture and Natural Resources; Board on Energy and Environmental Systems; Board on Atmospheric Sciences and Climate; Committee on Developing a Research Agenda for Carbon Dioxide Removal and Reliable Sequestration. 2018. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. The National Academies Press (US). doi:https://doi.org/10.17226/25259
  • Bobeck J, Peace J, Ahmad FM, et al. (2019). “Carbon utilization: a vital and effective pathway for decarbonization,” [Online]. Available: https://www.c2es.org/document/carbon-utilization-a-vital-and-effective-pathway-for-decarbonization/.
  • Hills CD, Tripathi N, Carey PJ. Mineralization technology for carbon capture, utilization, and storage. Front Energy Res. 2020;8; doi:10.3389/fenrg.2020.00142
  • Galan I, Andrade C, Mora P, et al. Sequestration of CO2 by concrete carbonation. Environ Sci Technol. Apr. 201;44(8):3181–3186. doi:10.1021/es903581d
  • Cui H, Tang W, Liu W, et al. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms. Constr Build Mater. 2015;93:522–527. doi:10.1016/j.conbuildmat.2015.06.007
  • Ekolu SO. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater. 2016;127:306–320. doi:10.1016/j.conbuildmat.2016.09.056
  • Talakokula V, Bhalla S, Ball RJ, et al. Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers. Sens Actuators, A Phys. 2016;242:79–91. doi:10.1016/j.sna.2016.02.033
  • Diasa RL, Beltrame NAM, Gonzalez JR, et al. Effect of duration and pressure of carbonation curing on the chloride profile in concrete. IBRACON Struct Mater J. 2023;16(5):e16603, doi:10.1590/S1983-41952023000600003
  • Zhang D, Shao Y. Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete. Constr Build Mater. 2016;123:516–526. doi:10.1016/j.conbuildmat.2016.07.041
  • Tay YWD, Lim JH, Li M, et al. Creating functionally graded concrete materials with varying 3D printing parameters. Virtual Phys Prototyp. 2022;17(3):662–681. doi:10.1080/17452759.2022.2048521
  • Nguyen PD, Nguyen TQ, Tao QB, et al. A data-driven machine learning approach for the 3D printing process optimisation. Virtual Phys Prototyp. 2022;17(4):768–786. doi:10.1080/17452759.2022.2068446
  • Shojaei Barjuei E, Courteille E, Rangeard D, et al. Real-time vision-based control of industrial manipulators for layer-width setting in concrete 3D printing applications. Adv Ind Manuf Eng. 2022;5:100094, doi:10.1016/j.aime.2022.100094
  • Panda B, Paul SC, Hui LJ, et al. Additive manufacturing of geopolymer for sustainable built environment. J Cleaner Prod. 2017;167:281–288. doi:10.1016/j.jclepro.2017.08.165
  • Amran YHM, Alyousef R, Alabduljabbar H, et al. Clean production and properties of geopolymer concrete: a review. J Cleaner Prod. 2020;251:119679, doi:10.1016/j.jclepro.2019.119679
  • van Zijl G, Babafemi AJ, de Villiers W, Kruger J. 3D concrete printing opportunities towards circularity – mix design, testing and mechanical performance. 2023. Available at SSRN: https://doi.org/10.2139/ssrn.4481392 (accessed Oct. 04, 2023).
  • Bhattacherjee S, Jain S, Santhanam M. Developing 3D printable and buildable limestone calcined clay-based cement composites with higher aggregate content. Constr Build Mater. 2023;376:131058, doi:10.1016/j.conbuildmat.2023.131058
  • Dey D, Srinivas D, Panda B, et al. Use of industrial waste materials for 3D printing of sustainable concrete: a review. J Cleaner Prod. 2022;340:130749, doi:10.1016/j.jclepro.2022.130749
  • Wang D, Xiao J, Sun B, et al. Mechanical properties of 3D printed mortar cured by CO2. Cem Concr Compos. 2023;139:105009, doi:10.1016/j.cemconcomp.2023.105009
  • Sun B, Zeng Q, Wang D, et al. Sustainable 3D printed mortar with CO2 pretreated recycled fine aggregates. Cem Concr Compos. 2022;134:104800, doi:10.1016/j.cemconcomp.2022.104800
  • Dixit A, Du H, Pang SD. Carbon capture in ultra-high performance concrete using pressurized CO2 curing. Constr Build Mater. 2021;288:123076, doi:10.1016/j.conbuildmat.2021.123076
  • Monkman S, MacDonald M, Hooton RD, et al. Properties and durability of concrete produced using CO2 as an accelerating admixture. Cem Concr Compos. 2016;74:218–224. doi:10.1016/j.cemconcomp.2016.10.007
  • He Z, Li Z, Shao Y. Effect of carbonation mixing on CO2 uptake and strength gain in concrete. J Mater Civ Eng. 2017;29(10):04017176, doi:10.1061/(ASCE)MT.1943-5533.0002031
  • Qian X, Wang J, Fang Y, et al. Carbon dioxide as an admixture for better performance of OPC-based concrete. J CO2 Util. 2018;25:31–38. doi:10.1016/j.jcou.2018.03.007
  • Kong Y, Song Y, Weng Y, et al. Influences of CO2-cured cement powders on hydration of cement paste. Greenh Gases: Sci Technol. 2022;12(2):249–262. doi:10.1002/ghg.2141
  • Ravikumar D, Zhang D, Keoleian G, et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat Commun. 2021;12(1):855, doi:10.1038/s41467-021-21148-w
  • Tay YWD, Panda B, Ting GHA, et al. 3D printing for sustainable construction). Industry 4.0 - Shaping the Future of the Digital World: Proceedings of the 2nd International Conference on Sustainable Smart Manufacturing (S2m 2019), 2020, p. 119–123, doi:10.1201/9780367823085-22
  • Kruger J, du Plessis A, van Zijl G. An investigation into the porosity of extrusion-based 3D printed concrete. Addit Manuf. 2021;37:101740, doi:10.1016/j.addma.2020.101740
  • A. O. Al-Khowaiter, A. Jamal, I. T. Amr, R. Bamagain, A. S. Al-Hunaidy, and B. A. Fadhel, “Cementitious Print Head, 3D Printing Architecture, and Cementitious Printing Methodology,” Patent No: US11236517 B2, 2022.
  • Tay YWD, Li MY, Tan MJ. Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol. 2019;271:261–270. doi:10.1016/j.jmatprotec.2019.04.007
  • Wang D, Noguchi T, Nozaki T. Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. J Cleaner Prod. 2019;238:117980, doi:10.1016/j.jclepro.2019.117980
  • Kim S, Amr IT, Fadhel BA, et al. The effect of combined carbonation and steam curing on the microstructural evolution and mechanical properties of Portland cement concrete. Adv Concr Constr. 2021;11(5):367, doi:10.12989/acc.2021.11.5.367
  • ASTM C109 / C109M-21. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). West Conshohocken (PA): ASTM International; 2021.
  • Kim MS, Jun Y, Lee C, et al. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res. 2013;54:208–214. doi:10.1016/j.cemconres.2013.09.011
  • Madadi A, Wei J. Characterization of calcium silicate hydrate gels with different calcium to silica ratios and polymer modifications. Gels (Basel, Switzerland). 2022;8(2):75. doi:10.3390/gels8020075
  • Haghnegahdar MR, Rahimi A, Hatamipour MS. A rate equation for Ca(OH)2 and CO2 reaction in a spouted bed reactor at low gas concentrations. Chem Eng Res Des. 2011;89(6):616–620. doi:10.1016/j.cherd.2010.10.019
  • Villain G, Thiery M, Platret G. Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem Concr Res. 2007;37(8):1182–1192. doi:10.1016/j.cemconres.2007.04.015
  • Rostami V, Shao Y, Boyd AJ, et al. Microstructure of cement paste subject to early carbonation curing. Cem Concr Res. 2012;42(1):186–193. doi:10.1016/j.cemconres.2011.09.010
  • Mehdizadeh H, Meng Y, Guo M-Z, et al. Roles of CO2 curing induced calcium carbonates on high temperature properties of dry-mixed cement paste. Constr Build Mater. 2021;289:123193, doi:10.1016/j.conbuildmat.2021.123193
  • Chang R, Kim S, Lee S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism. Front Energy Res. 2017;5; doi:10.3389/fenrg.2017.00017
  • Tu Z, Guo M, Poon CS, et al. Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cem Concr Compos. 2016;72:9–16. doi:10.1016/j.cemconcomp.2016.05.019
  • Vogler N, Drabetzki P, Lindemann M, et al. Description of the concrete carbonation process with adjusted depth-resolved thermogravimetric analysis. J Therm Anal Calorim. 2022;147(11):6167–6180. doi:10.1007/s10973-021-10966-1
  • Seo J, Park S, Yoon HN, et al. Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume. Constr Build Mater. 2020;249:118691, doi:10.1016/j.conbuildmat.2020.118691
  • Seo JH, Park SM, Lee HK. Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium. Cem Concr Res. 2018;109:81–89. doi:10.1016/j.cemconres.2018.03.014
  • Silva DA, Roman HR, Gleize PJP. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem Concr Res. 2002;32(9):1383–1390. doi:10.1016/S0008-8846(02)00805-0
  • Collier NC. Transition and decomposition temperatures of cement phases – a collection of thermal analysis data. Ceram-Silik. 2016;60(4):338–343. doi:10.13168/cs.2016.0050
  • Winnefeld F, Leemann A, German A, et al. CO2 storage in cement and concrete by mineral carbonation. Curr Opin Green Sustain Chem. 2022;38:100672, doi:10.1016/j.cogsc.2022.100672
  • Galan I, Glasser FP, Baza D, et al. Assessment of the protective effect of carbonation on portlandite crystals. Cem Concr Res. 2015;74:68–77. doi:10.1016/j.cemconres.2015.04.001
  • Ashraf W, Olek J. Carbonation activated binders from pure calcium silicates: reaction kinetics and performance controlling factors. Cem Concr Compos. 2018;93:85–98. doi:10.1016/j.cemconcomp.2018.07.004
  • Kazemian M, Shafei B. Carbon sequestration and storage in concrete: a state-of-the-art review of compositions, methods, and developments. J CO2 Util. 2023;70:102443, doi:10.1016/j.jcou.2023.102443
  • Moelich GM, Kruger J, Combrinck R. Modelling the interlayer bond strength of 3D printed concrete with surface moisture. Cem Concr Res. 2021;150:106559, doi:10.1016/j.cemconres.2021.106559
  • Moelich GM, Kruger J, Combrinck R. Plastic shrinkage cracking in 3D printed concrete. Compos Part B: Eng. 2020;200:108313, doi:10.1016/j.compositesb.2020.108313
  • Slavcheva GS. Drying and shrinkage of cement paste for 3D printable concrete. IOP Conf Ser: Mater Sci Eng. 2019;481(1):012043, doi:10.1088/1757-899X/481/1/012043