813
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical and constitutive modeling of quasi-static and dynamic mechanical behavior in graded additively manufactured lattice structures

, , , , &
Article: e2283027 | Received 06 Sep 2023, Accepted 06 Nov 2023, Published online: 27 Nov 2023

References

  • du Plessis A, Razavi N, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: a review. Prog Mater Sci. 2022;125:100918. doi:10.1016/j.pmatsci.2021.100918
  • Jadhav PH, Gnanasekaran N. Optimum design of heat exchanging device for efficient heat absorption using high porosity metal foams. Int Commun Heat Mass Transfer. 2021;126:105475. doi:10.1016/j.icheatmasstransfer.2021.105475
  • Wu Y, Fang J, Wu C, et al. Additively manufactured materials and structures: a state-of-the-art review on their mechanical characteristics and energy absorption. Int J Mech Sci. 2023;246:108102. doi:10.1016/j.ijmecsci.2023.108102
  • Yao R, Pang T, Zhang B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Struct. 2023;189:110734. doi:10.1016/j.tws.2023.110734
  • Yin H, Zhang W, Zhu L, et al. Review on lattice structures for energy absorption properties. Compos Struct. 2023;304:116397. doi:10.1016/j.compstruct.2022.116397
  • Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge: Cambridge University Press; 1997.
  • Evans AG, Hutchinson JW, Fleck NA, et al. The topological design of multifunctional cellular metals. Prog Mater Sci. 2001;46:309–327. doi:10.1016/S0079-6425(00)00016-5
  • Yin H, Liu Z, Dai J, et al. Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Compos Part B: Eng. 2020;182:107565. doi:10.1016/j.compositesb.2019.107565
  • Wang E, Yao R, Li Q, et al. Lightweight metallic cellular materials: a systematic review on mechanical characteristics and engineering applications. Int J Mech Sci. 2023:108795. doi:10.1016/j.ijmecsci.2023.108795
  • Benedetti M, du Plessis A, Ritchie RO, et al. Architected cellular materials: a review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng: R: Rep. 2021;144:100606. doi:10.1016/j.mser.2021.100606
  • Sun Y, Li QM. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling. Int J Impact Eng. 2018;112:74–115. doi:10.1016/j.ijimpeng.2017.10.006
  • Li X, Tan YH, Wang P, et al. Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. Compos Part A: Appl Sci Manuf. 2020;135:105934. doi:10.1016/j.compositesa.2020.105934
  • Tancogne-Dejean T, Spierings AB, Mohr D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 2016;116:14–28. doi:10.1016/j.actamat.2016.05.054
  • Wang E, Chen C, Zhang G, et al. Multiaxial mechanical characterization of additively manufactured open-cell Kelvin foams. Compos Struct. 2023;305:116505. doi:10.1016/j.compstruct.2022.116505
  • Cao X, Duan S, Liang J, et al. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section. Int J Mech Sci. 2018;145:53–63. doi:10.1016/j.ijmecsci.2018.07.006
  • Cao X, Xiao D, Li Y, et al. Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure. Thin-Walled Struct. 2020b;148:106586. doi:10.1016/j.tws.2019.106586
  • Guo X, Ding J, Li X, et al. Interpenetrating phase composites with 3D printed triply periodic minimal surface (TPMS) lattice structures. Compos Part B: Eng. 2023a;248:110351.
  • Guo X, Li X, Wang E, et al. Bioinspired hierarchical diamond triply periodic minimal surface lattices with high energy absorption and damage tolerance. Addit Manuf. 2023b;76:103792. doi:10.1016/j.addma.2023.103792
  • Wang H, Tan D, Liu Z, et al. On crashworthiness of novel porous structure based on composite TPMS structures. Eng Struct. 2022;252:113640. doi:10.1016/j.engstruct.2021.113640
  • Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater. 2018;30:1705708. doi:10.1002/adma.201705708
  • Bonatti C, Mohr D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J Mech Phys Solids. 2019;122:1–26. doi:10.1016/j.jmps.2018.08.022
  • Feng G, Li S, Xiao L, et al. Mechanical properties and deformation behavior of functionally graded TPMS structures under static and dynamic loading. Int J Impact Eng. 2023;176:104554. doi:10.1016/j.ijimpeng.2023.104554
  • Yin H, Guo D, Wen G, et al. On bending crashworthiness of smooth-shell lattice-filled structures. Thin-Walled Struct. 2022;171:108800. doi:10.1016/j.tws.2021.108800
  • Zhao M, Liu F, Fu G, et al. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials. 2018;11:2411. doi:10.3390/ma11122411
  • Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167–183. doi:10.1016/j.addma.2017.12.006
  • Al-Ketan O, Rowshan R, Palazotto AN, et al. On mechanical properties of cellular steel solids with shell-like periodic architectures fabricated by selective laser sintering. J Eng Mater Technol. 2019;141:021009. doi:10.1115/1.4041874
  • Al-Ketan O, Soliman A, AlQubaisi AM, et al. Nature-inspired lightweight cellular co-continuous composites with architected periodic gyroidal structures. Adv Eng Mater. 2018;20:1700549. doi:10.1002/adem.201700549
  • Guo X, Ding J, Li X, et al. Enhancement in the mechanical behaviour of a Schwarz Primitive periodic minimal surface lattice structure design. Int J Mech Sci. 2022;216:106977. doi:10.1016/j.ijmecsci.2021.106977
  • Ha NS, Pham TM, Vo NH, et al. Dynamic crushing characteristics of bio-inspired minimal surface primitive structures. Compos Struct. 2023;304:116438. doi:10.1016/j.compstruct.2022.116438
  • Li X, Xiao L, Song W. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading. Addit Manuf. 2021;46:102054. doi:10.1016/j.addma.2021.102054
  • Zhang L, Feih S, Daynes S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf. 2018;23:505–515. doi:10.1016/j.addma.2018.08.007
  • Zhang J, Chen X, Sun Y, et al. Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size. Mater Des. 2022; 218:110665. doi:10.1016/j.matdes.2022.110665
  • Nguyen-Xuan H, Tran KQ, Thai CH, et al. Modelling of functionally graded triply periodic minimal surface (FG-TPMS) plates. Compos Struct. 2023;315:116981. doi:10.1016/j.compstruct.2023.116981
  • Novak N, Borovinšek M, Al-Ketan O, et al. Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures. Compos Struct. 2022;300:116174. doi:10.1016/j.compstruct.2022.116174
  • Al-Ketan O, Lee D-W, Rowshan R, et al. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J Mech Behav Biomed Mater. 2020;102:103520. doi:10.1016/j.jmbbm.2019.103520
  • Zhao M, Zhang DZ, Liu F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces. Int J Mech Sci. 2020;167:105262. doi:10.1016/j.ijmecsci.2019.105262
  • Qiu N, Zhang J, Li C, et al. Mechanical properties of three-dimensional functionally graded triply periodic minimum surface structures. Int J Mech Sci. 2023;246:108118. doi:10.1016/j.ijmecsci.2023.108118
  • Zhang C, Zheng H, Yang L, et al. Mechanical responses of sheet-based gyroid-type triply periodic minimal surface lattice structures fabricated using selective laser melting. Mater Des. 2022;214:110407. doi:10.1016/j.matdes.2022.110407
  • Peng C, Tran P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings. Compos Part B. Eng. 2020;188:107773.
  • Santiago R, Ramos H, AlMahri S, et al. Modelling and optimisation of TPMS-based lattices subjected to high strain-rate impact loadings. Int J Impact Eng. 2023;177:104592. doi:10.1016/j.ijimpeng.2023.104592
  • Gümrük R, Mines RAW, Karadeniz S. Determination of strain rate sensitivity of micro-struts manufactured using the selective laser melting method. J Mater Eng Perform. 2018;27:1016–1032. doi:10.1007/s11665-018-3208-y
  • Li L, Xue P, Luo G. A numerical study on deformation mode and strength enhancement of metal foam under dynamic loading. Mater Des. 2016;110:72–79. doi:10.1016/j.matdes.2016.07.123
  • Zheng Z, Wang C, Yu J, et al. Dynamic stress–strain states for metal foams using a 3D cellular model. J Mech Phys Solids. 2014;72:93–114. doi:10.1016/j.jmps.2014.07.013
  • AlMahri S, Santiago R, Lee D-W, et al. Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. Addit Manuf. 2021;46:102220. doi:10.1016/j.addma.2021.102220
  • Lee S, Barthelat F, Moldovan N, et al. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. Int J Solids Struct. 2006;43:53–73. doi:10.1016/j.ijsolstr.2005.06.101
  • Tancogne-Dejean T, Mohr D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. Int J Mech Sci. 2018;141:101–116. doi:10.1016/j.ijmecsci.2018.03.027
  • Wang E, Sun G, Zheng G, et al. On multiaxial failure behavior of closed-cell aluminum foams under medium strain rates. Thin-Walled Struct. 2021;160:107278. doi:10.1016/j.tws.2020.107278
  • Wang P, Xu S, Li Z, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater Sci Eng A. 2015;620:253–261. doi:10.1016/j.msea.2014.10.026
  • Chen J, Zhang P, Cheng Y, et al. On the crushing response of the functionally graded metallic foams based on 3D Voronoi model. Thin-Walled Struct. 2020;157:107085. doi:10.1016/j.tws.2020.107085
  • Duan Y, Du B, Shi X, et al. Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with Kelvin cells. Int J Impact Eng. 2019;132:103303. doi:10.1016/j.ijimpeng.2019.05.017
  • Novak N, Kytyr D, Rada V, et al. Compression behaviour of TPMS-filled stainless steel tubes. Mater Sci Eng A. 2022;852:143680. doi:10.1016/j.msea.2022.143680
  • Zhu C, Zheng Z, Wang S, et al. Modification and verification of the Deshpande–Fleck foam model: A variable ellipticity. Int J Mech Sci. 2019;151:331–342. doi:10.1016/j.ijmecsci.2018.11.028
  • Santosa SP, Wierzbicki T, Hanssen AG, et al. Experimental and numerical studies of foam-filled sections. Int J Impact Eng. 2000;24:509–534. doi:10.1016/S0734-743X(99)00036-6
  • Li Q, Zhi X, Fan F. Dynamic crushing of uniform and functionally graded origami-inspired cellular structure fabricated by SLM. Eng Struct. 2022a;262:114327. doi:10.1016/j.engstruct.2022.114327
  • Li Q, Zhi X, Fan F. Quasi-static compressive behaviour of 3D-printed origami-inspired cellular structure: experimental, numerical and theoretical studies. Virtual Phys Prototyp. 2022b;17:69–91. doi:10.1080/17452759.2021.1987051
  • Sun ZP, Guo YB, Shim VPW. Influence of printing direction on the dynamic response of additively-manufactured polymeric materials and lattices. Int J Impact Eng. 2022;167:104263. doi:10.1016/j.ijimpeng.2022.104263
  • Morrish SJN, Pedersen M, Wong KFW, et al. Size effects in compression in Electron Beam Melted Ti6Al4 V diamond structure lattices. Mater Lett. 2017;190:138–142. doi:10.1016/j.matlet.2016.12.130
  • Lu C, Zhang Y, Aziz M, et al. Mechanical behaviors of multidimensional gradient gyroid structures under static and dynamic loading: a numerical and experimental study. Addit Manuf. 2022;59:103187. doi:10.1016/j.addma.2022.103187
  • McKown S, Shen Y, Brookes WK, et al. The quasi-static and blast loading response of lattice structures. Int J Impact Eng. 2008;35:795–810. doi:10.1016/j.ijimpeng.2007.10.005
  • Montazerian H, Davoodi E, Asadi-Eydivand M, et al. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater Des. 2017;126:98–114. doi:10.1016/j.matdes.2017.04.009
  • Rashed MG, Ashraf M, Mines RAW, et al. Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater Des. 2016;95:518–533. doi:10.1016/j.matdes.2016.01.146
  • Sun G, Wang E, Zhao T, et al. Inverse identification of cell-wall material properties of closed-cell aluminum foams based upon Vickers nano-indentation tests. Int J Mech Sci. 2020;176:105524. doi:10.1016/j.ijmecsci.2020.105524
  • Wang E, Yao R, Luo Q, et al. High-temperature and dynamic mechanical characterization of closed-cell aluminum foams. Int J Mech Sci. 2022;230:107548. doi:10.1016/j.ijmecsci.2022.107548
  • Wang Z, Shen J, Lu G, et al. Compressive behavior of closed-cell aluminum alloy foams at medium strain rates. Mater Sci Eng A. 2011;528:2326–2330. doi:10.1016/j.msea.2010.12.059
  • Maskery I, Aboulkhair NT, Aremu AO, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Mater Sci Eng A. 2016;670:264–274. doi:10.1016/j.msea.2016.06.013
  • Liu H, Chen L, Jiang Y, et al. Multiscale optimization of additively manufactured graded non-stochastic and stochastic lattice structures. Compos Struct. 2023;305:116546. doi:10.1016/j.compstruct.2022.116546
  • Liu X, Gao L, Xiao M. Multiscale concurrent topology optimization of hierarchal multi-morphology lattice structures. Comput Methods Appl Mech Eng. 2023;415:116209. doi:10.1016/j.cma.2023.116209
  • Zhao M, Li X, Zhang DZ, et al. TPMS-based interpenetrating lattice structures: design, mechanical properties and multiscale optimization. Int J Mech Sci. 2023;244:108092. doi:10.1016/j.ijmecsci.2022.108092
  • Yang J, Wang S, Ding Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model. Mater Sci Eng A. 2017;680:411–420. doi:10.1016/j.msea.2016.11.010
  • Sun Y, Li QM, Lowe T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling. Mater Des. 2016;89:215–224. doi:10.1016/j.matdes.2015.09.109
  • Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metals. Int J Solids Struct. 2009;46:3988–3998. doi:10.1016/j.ijsolstr.2009.07.024
  • Wang L. Foundations of stress waves. Amsterdam: Elsevier; 2011.
  • Reid SR, Peng C. Dynamic uniaxial crushing of wood. Int J Impact Eng. 1997;19:531–570. doi:10.1016/S0734-743X(97)00016-X
  • Wang C, Li Y, Zhao W, et al. Structure design and multi-objective optimization of a novel crash box based on biomimetic structure. Int J Mech Sci. 2018;138-139:489–501.
  • Shen J, Lu G, Ruan D. Compressive behaviour of closed-cell aluminium foams at high strain rates. Compos Part B: Eng. 2010;41:678–685. doi:10.1016/j.compositesb.2010.07.005