1,084
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of path patterns on residual stresses and deformations of directed energy deposition-arc built blocks

, , , &
Article: e2296128 | Received 09 Oct 2023, Accepted 08 Dec 2023, Published online: 27 Dec 2023

References

  • Ding D, He F, Yuan L, et al. The first step towards intelligent wire arc additive manufacturing: an automatic bead modelling system using machine learning through industrial information integration. J Ind Inf Integr. 2021;23:100218. doi:10.1016/j.jii.2021.100218
  • Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Join. 2019;24(5):484–494. doi:10.1080/13621718.2019.1580439
  • Wang Y, Xu X, Zhao Z, et al. Coordinated monitoring and control method of deposited layer width and reinforcement in WAAM process. J Manuf Process. 2021;71:306–316. doi:10.1016/j.jmapro.2021.09.033
  • Xia C, Pan Z, Zhang S, et al. Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing. Int J Adv Manuf Technol. 2020;110:2131–2142. doi:10.1007/s00170-020-05998-0
  • Seow CE, Coules HE, Wu G, et al. Wire + arc additively manufactured inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Mater Des. 2019;183:108157. doi:10.1016/j.matdes.2019.108157
  • Cunningham CR, Flynn JM, Shokrani A, et al. (2018). Invited review article: Strategies and processes for high quality wire arc additive.
  • Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V. J Mater Process Technol. 2017;250:304–312. doi:10.1016/j.jmatprotec.2017.07.037
  • Walker TR, Bennett CJ, Lee TL, et al. A novel numerical method to predict the transient track geometry and thermomechanical effects through in-situ modification of the process parameters in direct energy deposition. Finite Elem Anal Des. 2020;169:103347. doi:10.1016/j.finel.2019.103347
  • Bruna-Rosso C, Demir AG, Previtali B. Selective laser melting finite element modeling: validation with high-speed imaging and lack of fusion defects prediction. Mater Des. 2018;156:143–153. doi:10.1016/j.matdes.2018.06.037
  • Seleš K, Perić M, Tonković Z. Numerical simulation of a welding process using a prescribed temperature approach. J Constr Steel Res. 2018;145:49–57. doi:10.1016/j.jcsr.2018.02.012
  • Nijhuis B, Geijselaers HJM, van den Boogaard AH. Efficient thermal simulation of large-scale metal additive manufacturing using hot element addition. Comput Struct. 2021;245:106463. doi:10.1016/j.compstruc.2020.106463
  • Schilp J, Seidel C, Krauss H, et al. Investigations on temperature fields during laser beam melting by means of process monitoring and multiscale process modelling. Adv Mech Eng. 2014;6:217584. doi:10.1155/2014/217584
  • Khoshroyan A, Darvazi AR. Effects of welding parameters and welding sequence on residual stress and distortion in Al6061-T6 aluminum alloy for T-shaped welded joint. Trans Nonferrous Met Soc China. 2020;30(1):76–89. doi:10.1016/S1003-6326(19)65181-2
  • Vasinonta A, Beuth JL, Griffith M. (2007). Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures.
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • Gaikwad A, Yavari R, Montazeri M, et al. Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Trans. 2020;52(11):1204–1217. doi:10.1080/24725854.2019.1701753
  • Luo Z, Zhao Y. A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Addit Manuf. 2018;21:318–332. doi:10.1016/j.addma.2018.03.022
  • Bandyopadhyay A, Traxel KD. Invited review article: metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf. 2018;22:758–774. doi:10.1016/j.addma.2018.06.024
  • Khairallah SA, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol. 2014;214(11):2627–2636. doi:10.1016/j.jmatprotec.2014.06.001
  • Yan W, Ge W, Qian Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 2017;134:324–333. doi:10.1016/j.actamat.2017.05.061
  • Meng G, Zhang J, Li J, et al. Impact of pore defects on laser additive manufacturing of Inconel 718 alloy based on a novel finite element model: thermal and stress evaluation. Opt Laser Technol. 2023;167:109782. doi:10.1016/j.optlastec.2023.109782
  • Nagaraj MH, Maiaru M. A novel higher-order finite element framework for the process modeling of material extrusion additive manufacturing. Addit Manuf. 2023;76:103759. doi:10.1016/j.addma.2023.103759
  • Zhou J, Barrett RA, Leen SB. Three-dimensional finite element modelling for additive manufacturing of Ti-6Al-4V components: effect of scanning strategies on temperature history and residual stress. J Adv Join Process. 2022;5:100106. doi:10.1016/j.jajp.2022.100106
  • Alhakeem MM, Mollamahmutoglu M, Yilmaz O, et al. A deposition strategy for wire arc additive manufacturing based on temperature variance analysis to minimize overflow and distortion. J Manuf Process. 2023;85:1208–1220. doi:10.1016/j.jmapro.2022.11.006
  • Zhao H, Zhang G, Yin Z, et al. Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol. 2012;212(1):276–285. doi:10.1016/j.jmatprotec.2011.09.012
  • Heinze C, Schwenk C, Rethmeier M. The effect of tack welding on numerically calculated welding-induced distortion. J Mater Process Technol. 2012;212(1):308–314. doi:10.1016/j.jmatprotec.2011.09.016
  • Wu Q, Mukherjee T, De A, et al. Residual stresses in wire-arc additive manufacturing – hierarchy of influential variables. Addit Manuf. 2020;35:101355. doi:10.1016/j.addma.2020.101355
  • Parry L, Ashcroft IA, Wildman RD. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Addit Manuf. 2016;12:1–15. doi:10.1016/j.addma.2016.05.014
  • Yan L, Zhang Y, Liou F. A conceptual design of residual stress reduction with multiple shape laser beams in direct laser deposition. Finite Elem Anal Des. 2018;144:30–37. doi:10.1016/j.finel.2018.02.004
  • Chiumenti M, Lin X, Cervera M, et al. Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: thermal analysis. Rapid Prototyp J. 2017;23(2):448–463. doi:10.1108/RPJ-10-2015-0136
  • Nie Z, Wang G, McGuffin-Cawley JD, et al. Experimental study and modeling of H13 steel deposition using laser hot-wire additive manufacturing. J Mater Process Technol. 2016;235:171–186. doi:10.1016/j.jmatprotec.2016.04.006
  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci. 2011;50(12):3315–3322. doi:10.1016/j.commatsci.2011.06.023
  • Vastola G, Zhang G, Pei QX, et al. Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling. Addit Manuf. 2016;12:231–239. doi:10.1016/j.addma.2016.05.010
  • Ren K, Chew Y, Fuh JYH, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes. Mater Des. 2019;162:80–93. doi:10.1016/j.matdes.2018.11.014
  • Ding D, Zhang S, Lu Q, et al. The well-distributed volumetric heat source model for numerical simulation of wire arc additive manufacturing process. Materi Today Commun. 2021;27:102430. doi:10.1016/j.mtcomm.2021.102430
  • Liu WJ (2017). Numerical simulation of temperature field and stress field in arc additive manufacturing and evaluation of forming path strategy [master's thesis]. Huazhong University of Science and Technology; 2017.
  • Wei S, Wang Z, Yang Y, et al. Finite element analysis of shot peening to improve residual stress field in Q235B welded joints. Hot Work Technol. 2020;49(9):8.
  • Yan C. Research on GMAW additive manufacturing process for low carbon steel ship parts [master's thesis] Zhejiang Ocean University; 2021.
  • Hu GY. Research on the rolling process of CO_2 gas shielded welding wire spool ER50-6 [master's thesis]. Xi'an University of Architecture and Technology; 2013.
  • Zhang C, Li S, Hu L, et al. Effects of pass arrangement on angular distortion, residual stresses and lamellar tearing tendency in thick-plate T-joints of low alloy steel. J Mater Process Technol. 2019;274:116293. doi:10.1016/j.jmatprotec.2019.116293
  • Chiumenti M, Cervera M, Salmi A, et al. Finite element modeling of multi-pass welding and shaped metal deposition processes. Comput Methods Appl Mech Eng. 2010;199(37-40):2343–2359. doi:10.1016/j.cma.2010.02.018
  • Nickel AH, Barnett DM, Prinz FB. Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng: A. 2001;317(1-2):59–64.