610
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heterogeneous grain structure in biodegradable Zn prepared via mechanical alloying and laser powder bed fusion for strength-plasticity synergy

, , &
Article: e2317780 | Received 06 Nov 2023, Accepted 05 Feb 2024, Published online: 21 Feb 2024

References

  • Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R-Rep. 2014;77:1–34. doi:10.1016/j.mser.2014.01.001
  • Shi Z, Li Z, Bai W, et al. (Fe, Mn)Zn13 phase and its core-shell structure in novel biodegradable Zn-Mn-Fe alloys. Mater Des. 2019;162:235–245. doi:10.1016/j.matdes.2018.11.057
  • Li HF, Shi ZZ, Wang LN. Opportunities and challenges of biodegradable Zn-based alloys. J Mater Sci Technol. 2020;46:136–138. doi:10.1016/j.jmst.2019.12.014
  • Yuan W, Xia D, Wu S, et al. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater. 2022;7:192–216. doi:10.1016/j.bioactmat.2021.05.018
  • Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25:2577–2582. doi:10.1002/adma.201300226
  • Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol 2019;37:428–441. doi:10.1016/j.tibtech.2018.10.009
  • Ma J, Niu L, Yan Y, et al. Influence of heat treatment on microstructure and electrochemical behaviors of Mg-Zn binary alloys prepared by gas-phase alloying technique. J Cent South Univ. 2020;27:762–771. doi:10.1007/s11771-020-4329-7
  • Stefanidou M, Maravelias C, Dona A, et al. Zinc: a multipurpose trace element. Arch Toxicol 2006;80:1–9. doi:10.1007/s00204-005-0009-5
  • Huang X, Huang D, Zhu T, et al. Sustained zinc release in cooperation with CaP scaffold promoted bone regeneration via directing stem cell fate and triggering a pro-healing immune stimuli. J Nanobiotechnology. 2021;19:207. doi:10.1186/s12951-021-00956-8
  • Jia B, Yang H, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 2020;108:358–372. doi:10.1016/j.actbio.2020.03.009
  • Yue R, Zhang J, Ke G, et al. Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy. Mater Sci Eng: C. 2019;105:110106. doi:10.1016/j.msec.2019.110106
  • Tang Z, Huang H, Niu J, et al. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants. Mater Des. 2017;117:84–94. doi:10.1016/j.matdes.2016.12.075
  • Zhu X, Ren T, Guo P, et al. Strengthening mechanism and biocompatibility of degradable Zn-Mn alloy with different Mn content. Mater Today Commun. 2022;31:103639. doi:10.1016/j.mtcomm.2022.103639
  • Bednarczyk W, Kawałko J, Wątroba M, et al. Microstructure and mechanical properties of a Zn-0.5Cu alloy processed by high-pressure torsion. Mater Sci Eng A. 2020;776:139047. doi:10.1016/j.msea.2020.139047
  • Chen C, Fan S, Niu J, et al. Alloying design strategy for biodegradable zinc alloys based on first-principles study of solid solution strengthening. Mater Des. 2021;204:109676. doi:10.1016/j.matdes.2021.109676
  • Li W, Dai Y, Zhang D, et al. Biodegradable Zn–0.5Li alloys with supersaturated solid solution—aging treatment for implant applications. J Mater Res Technol. 2023;24:9292–9305. doi:10.1016/j.jmrt.2023.05.136
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi:10.1126/science.1092905
  • Wu XL, Yang MX, Yuan FP, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci USA 2015;112:14501–14505.
  • Lin D, Xi X, Ma R, et al. Fabrication of a strong and ductile FeCoCrNiMo0.3 high-entropy alloy with a micro-nano precipitate framework via laser powder bed fusion. Compos B: Eng. 2023;266:111006. doi:10.1016/j.compositesb.2023.111006
  • Zhu Y, Wu X. Heterostructured materials. Prog Mater Sci. 2023;131:101019. doi:10.1016/j.pmatsci.2022.101019
  • Sawangrat C, Kato S, Orlov D, et al. Harmonic-structured copper: performance and proof of fabrication concept based on severe plastic deformation of powders. J Mater Sci. 2014;49:6579–6585. doi:10.1007/s10853-014-8258-4
  • Zhang Z, Vajpai SK, Orlov D, et al. Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics. Mater Sci Eng A. 2014;598:106–113. doi:10.1016/j.msea.2014.01.023
  • Kikuchi S, Mori T, Kubozono H, et al. Evaluation of near-threshold fatigue crack propagation in harmonic-structured CP titanium with a bimodal grain size distribution. Eng Fract Mech. 2017;181:77–86. doi:10.1016/j.engfracmech.2017.06.026
  • Sekiguchi T, Ono K, Fujiwara H, et al. New microstructure design for commercially pure titanium with outstanding mechanical properties by mechanical milling and Hot roll sintering. Mater Trans. 2010;51:39–45. doi:10.2320/matertrans.MB200913
  • Tsuchiyama T, Hamamoto S, Nakashima K, et al. Microstructure of fine-grained β-type titanium alloy produced by mechanical alloying and consolidation process. Mater Sci Eng A. 2008;474:120–127. doi:10.1016/j.msea.2007.03.104
  • Wang XQ, Carter LN, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater. 2017;128:87–95. doi:10.1016/j.actamat.2017.02.007
  • Zhu YZ, Joralmon D, Shan WT, et al. 3D printing biomimetic materials and structures for biomedical applications. Bio-Des Manuf. 2021;4:405–428. doi:10.1007/s42242-020-00117-0
  • Zhang C, Zhu H, Hu Z, et al. A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties. Mater Sci Eng A. 2019;746:416–423. doi:10.1016/j.msea.2019.01.024
  • Li Z, Li H, Zhu X, et al. Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven Jet. Adv Sci. 2022;9:2105331. doi:10.1002/advs.202105331
  • Gu D, Guo M, Zhang H, et al. Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extreme Manuf. 2020;2:025001. doi:10.1088/2631-7990/ab7b00
  • Wei C, Gu H, Gu YC, et al. Abnormal interfacial bonding mechanisms of multi-material additive-manufactured tungsten-stainless steel sandwich structure. Int J Extreme Manuf. 2022;4:025002.
  • E. Santecchia, S. Spigarelli, M. Cabibbo, Material reuse in laser powder bed fusion: side effects of the laser—metal powder interaction. 2020.
  • Xie D, Lv F, Shen L, et al. Effect of higher laser power remelting on porosity and mechanical performance of part built by laser powder bed fusion. Int J Adv Manuf Technol. 2023;125:4779–4791. doi:10.1007/s00170-023-11067-z
  • Xi X, Lin D, Song X, et al. Strength-plasticity transition mechanism after the solution treatment of GH3230 superalloy fabricated via laser powder bed fusion. Mater Sci Eng A. 2023;876:145124. doi:10.1016/j.msea.2023.145124
  • Chen C, Li S, Ling C, et al. Laser printed amorphous magnesium alloy: microstructure, mechanical properties and degradation behavior. J Mater Res Technol. 2023;27:6961–6973. doi:10.1016/j.jmrt.2023.11.095
  • Shuai C, Xie J, Jiang X, et al. Additively manufactured high entropy alloy with high wear resistance for biomedical implant. Vacuum. 2024;221:112939. doi:10.1016/j.vacuum.2023.112939
  • Dong YP, Tang JC, Wang DW, et al. Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V. Mater Des. 2020;196:109142. doi:10.1016/j.matdes.2020.109142
  • Lin D, Xi X, Yan M, et al. Significantly improved weldability in laser welding of additively manufactured Haynes 230 superalloys by tailoring microstructure. J Mater Res Technol. 2023;26:7873–7892. doi:10.1016/j.jmrt.2023.09.134
  • Shuai C, Shi X, Yang F, et al. Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection. Int J Extreme Manuf. 2024;6:015101. doi:10.1088/2631-7990/ad01fd
  • Nouri A, Rohani Shirvan A, Li Y, et al. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review. J Mater Sci Technol. 2021;94:196–215. doi:10.1016/j.jmst.2021.03.058
  • Qi F, Liao R, Wu P, et al. An electrical microenvironment constructed based on electromagnetic induction stimulates neural differentiation. Mater Chem Front. 2023;7:1671–1683. doi:10.1039/D2QM01193J
  • Feng P, Zhao R, Yang F, et al. Co-continuous structure enhanced magnetic responsive shape memory PLLA/TPU blend fabricated by 4D printing. Virtual Phys Prototyp. 2024;19:e2290186. doi:10.1080/17452759.2023.2290186
  • Ferretto I, Kim D, Della Ventura NM, et al. Laser powder bed fusion of a Fe–Mn–Si shape memory alloy. Addit Manuf. 2021;46:102071. doi:10.1016/j.addma.2021.102071
  • Shuai C, Wang K, Peng S, et al. Accelerating Ce3+/Ce4+ conversion in CeO2 via Mn doping to endow scaffolds with chemodynamic therapy properties. Surf Interfaces. 2024;45:103846. doi:10.1016/j.surfin.2024.103846
  • Li Y, Pavanram P, Zhou J, et al. Additively manufactured biodegradable porous zinc. Acta Biomater. 2020;101:609–623. doi:10.1016/j.actbio.2019.10.034
  • Zhou Y, Wang J, Yang Y, et al. Laser additive manufacturing of zinc targeting for biomedical application. Int J Bioprinting. 2021;8:501. doi:10.18063/ijb.v8i1.501
  • Parsons EM, Shaik SZ. Additive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusion. Addit Manuf. 2022;50:102450. doi:10.1016/j.addma.2021.102450
  • Qin Y, Liu J, Chen Y, et al. Influence of laser energy input and shielding gas flow on evaporation fume during laser powder bed fusion of Zn metal. 2021.
  • Peng HR, Gong MM, Chen YZ, et al. Thermal stability of nanocrystalline materials: thermodynamics and kinetics. Int Mater Rev. 2017;62:303–333.
  • Ma XF, Sun YN, Cheng WJ, et al. Effect of high-speed laser cladding on microstructure and corrosion resistance of CoCrFeNiMo0.2 high-entropy alloy. J Cent South Univ. 2022;29:3436–3446. doi:10.1007/s11771-022-5162-y
  • Zhang CY, Lan C, Lin JJ, et al. In vitro evaluation of degradation, cytocompatibility and antibacterial property of polycaprolactone/hydroxyapatite composite coating on bioresorbable magnesium alloy. J Magnes Alloys. 2022;10:2252–2265. doi:10.1016/j.jma.2021.07.014
  • Craig O, Bois-Brochu A, Plucknett K. Geometry and surface characteristics of H13 hot-work tool steel manufactured using laser-directed energy deposition. Int J Adv Manuf Technol. 2021;116:699–718. doi:10.1007/s00170-021-07322-w
  • Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8:925–936. doi:10.1016/j.actbio.2011.11.014
  • Zadpoor AA. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater Sci Eng C Mater Biol Appl. 2014;35:134–143. doi:10.1016/j.msec.2013.10.026
  • Zhang S, Zhang X, Zhao C, et al. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626–640. doi:10.1016/j.actbio.2009.06.028
  • Ibrahim AMH, Balog M, Krizik P, et al. Partially biodegradable Ti-based composites for biomedical applications subjected to intense and cyclic loading. J Alloys Compd. 2020;839:155663. doi:10.1016/j.jallcom.2020.155663
  • Yoshitake T, Hara T, Fukugawa T, et al. Low-Temperature growth of nanocrystalline diamond by reactive pulsed laser deposition under a hydrogen atmosphere. Jpn J Appl Phys. 2004;43:L240. doi:10.1143/JJAP.43.L240
  • Liu H, Wang Y, Li B, et al. Effect of cryogenic rolling process on microstructure and mechanical properties of Mg-14Li-1Al alloy. Mater Charact. 2019;157:109903. doi:10.1016/j.matchar.2019.109903
  • Dercz G, Matuła I, Zubko M, et al. Synthesis of porous Ti–50Ta alloy by powder metallurgy. Mater Charact. 2018;142:124–136. doi:10.1016/j.matchar.2018.05.033
  • Yu H, Sun Y, Hu L, et al. Microstructural evolution of AZ61-10at.%Ti composite powders during mechanical milling. Mater Des. 2016;104:265–275. doi:10.1016/j.matdes.2016.05.014
  • Han L, Liu J, Tang H, et al. Study of Zr addition on the composition, crystallite size, microstructure and properties of high-performance nano Cu alloys prepared by mechanical alloying. Mater Chem Phys. 2022;290:126630. doi:10.1016/j.matchemphys.2022.126630
  • Suryanarayana C, Al-Joubori AA, Wang Z. Nanostructured materials and nanocomposites by mechanical alloying: an overview. Met Mater Int. 2022;28:41–53. doi:10.1007/s12540-021-00998-5
  • Tjong SC, Chen H. Nanocrystalline materials and coatings. Mater Sci Eng: R. Rep. 2004;45:1–88.
  • Fogagnolo JB, Velasco F, Robert MH, et al. Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater Sci Eng A. 2003;342:131–143. doi:10.1016/S0921-5093(02)00246-0
  • Qi F, Wang Z, Yang L, et al. A collaborative CeO2@metal-organic framework nanosystem to endow scaffolds with photodynamic antibacterial effect. Materials Today Chemistry. 2023;27:101336. doi:10.1016/j.mtchem.2022.101336
  • Vock S, Klöden B, Kirchner A, et al. Powders for powder bed fusion: a review. Prog Addit Manuf. 2019;4:383–397. doi:10.1007/s40964-019-00078-6
  • Gao MZ, Ludwig B, Palmer TA. Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing. Powder Technol. 2021;383:30–42. doi:10.1016/j.powtec.2020.12.005
  • Brika SE, Letenneur M, Dion CA, et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit Manuf. 2020;31:100929. doi:10.1016/j.addma.2019.100929
  • Mosallanejad MH, Niroumand B, Aversa A, et al. In-situ alloying in laser-based additive manufacturing processes: a critical review. J Alloys Compd. 2021;872:159567. doi:10.1016/j.jallcom.2021.159567
  • Wright SI, Nowell MM, Field DP. A review of strain analysis using electron backscatter diffraction. Microsc Microanal. 2011;17:316–329. doi:10.1017/S1431927611000055
  • Fullwood DT, Sanderson S, Baird S, et al. Determining grain boundary position and geometry from EBSD data: limits of accuracy. Microsc Microanal. 2022;28:96–108. doi:10.1017/S1431927621013611
  • Han Q, Setchi R, Evans SL. Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. Int J Adv Manuf Technol. 2017;88:1429–1438. doi:10.1007/s00170-016-8866-z
  • Gao C, Yao X, Deng Y, et al. Laser-beam powder bed fusion followed by annealing with stress: a promising route for magnetostrictive improvement of polycrystalline Fe81Ga19 alloys. Addit Manuf. 2023;68:103516. doi:10.1016/j.addma.2023.103516
  • Hagihara K, Nakano T. Control of anisotropic crystallographic texture in powder Bed fusion additive manufacturing of metals and ceramics—a review. JOM. 2022;74:1760–1773. doi:10.1007/s11837-021-04966-7
  • Nadammal N, Mishurova T, Fritsch T, et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing. Addit Manuf. 2021;38:101792. doi:10.1016/j.addma.2020.101792
  • Xu W, Zhang B, Du K, et al. Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries. Acta Mater. 2022;226:117640. doi:10.1016/j.actamat.2022.117640
  • Guglielmi PO, Ziehmer M, Lilleodden ET. On a novel strain indicator based on uncorrelated misorientation angles for correlating dislocation density to local strength. Acta Mater. 2018;150:195–205. doi:10.1016/j.actamat.2018.03.009
  • He J, Yuan F, Yang M, et al. Exceptional tensile properties under cryogenic temperature in heterogeneous laminates induced by non-uniform martensite transformation and strain delocalization. Mater Sci Eng A. 2020;791:139780. doi:10.1016/j.msea.2020.139780
  • Zhang B, Pei X, Zhou C, et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater Des. 2018;152:30–39. doi:10.1016/j.matdes.2018.04.065
  • Carluccio D, Xu C, Venezuela J, et al. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater. 2020;103:346–360. doi:10.1016/j.actbio.2019.12.018
  • Qi F, Li H, Gao X, et al. Oxygen vacancy healing boosts the piezoelectricity of bone scaffolds, Biomaterials Science. 2024.
  • Mroz TE, Lin EL, Summit MC, et al. Biomechanical analysis of allograft bone treated with a novel tissue sterilization process. Spine J: Off J N Am Spine Soc. 2006;6:34–39. doi:10.1016/j.spinee.2005.10.007
  • Mabrouk M, Mousa SM, Abd ElGhany WA, et al. Bioactivity and cell viability of Ag+- and Zr4+-co-doped biphasic calcium phosphate. Appl Phys A-Mater Sci Process. 2021;127:948. doi:10.1007/s00339-021-05051-1
  • Pitzen T, Tan JS, Dvorak MF, et al. Local autograft retrieval from a cervical vertebral body: biomechanical consequences. J Neurosurg-Spine. 2012;16:340–344. doi:10.3171/2011.12.SPINE11677
  • Wen P, Qin Y, Chen Y, et al. Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol. 2019;35:368–376. doi:10.1016/j.jmst.2018.09.065
  • Huttunen M, Ashammakhi N, Törmälä P, et al. Fibre reinforced bioresorbable composites for spinal surgery. Acta Biomater. 2006;2:575–587. doi:10.1016/j.actbio.2006.03.008
  • Zhou YL, Luo DM, Hu WY, et al. Compressive properties of hot-rolled Mg-Zr-Ca alloys for biomedical applications. Adv Mat Res. 2011;197-198-198:56–59. doi:10.4028/www.scientific.net/AMR.197-198.56
  • Ma X, Huang C, Moering J, et al. Mechanical properties of copper/bronze laminates: role of interfaces. Acta Mater. 2016;116:43–52. doi:10.1016/j.actamat.2016.06.023
  • Ma XL, Huang CX, Xu WZ, et al. Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scr Mater. 2015;103:57–60. doi:10.1016/j.scriptamat.2015.03.006
  • Beyerlein IJ, Mayeur JR, Zheng S, et al. Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci USA. 2014;111:4386–4390. doi:10.1073/pnas.1319436111
  • Park HK, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress. Mater Res Lett. 2018;6:261–267. doi:10.1080/21663831.2018.1439115
  • Liu J, Chen Z, Zhang F, et al. Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process. Mater Res Lett. 2018;6:406–412. doi:10.1080/21663831.2018.1471421
  • Liu Y, Cao Y, Mao Q, et al. Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Mater. 2020;189:129–144. doi:10.1016/j.actamat.2020.03.001
  • Huang H, Li G, Jia Q, et al. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater. 2022;152:1–18. doi:10.1016/j.actbio.2022.08.041
  • Hu J, Shi YN, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. SCIENCE. 2017;355:1292–1296. doi:10.1126/science.aal5166
  • Edalati K, Horita Z, Valiev RZ. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy. Sci Rep. 2018;8:6740.doi:10.1038/s41598-018-25140-1
  • Zhao S, Seitz J, Eifler R, et al. Zn-Li alloy after extrusion and drawing: structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Mater Sci Eng: C. 2017;76:301–312. doi:10.1016/j.msec.2017.02.167
  • Ren K, Zhang K, Zhang Y, et al. Effect of ECAP temperature on formation of triple heterogeneous microstructure and mechanical properties of Zn–1Cu alloy. Mater Sci Eng A. 2021;826:141990. doi:10.1016/j.msea.2021.141990
  • Guo P, Zhu X, Yang L, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo. Mater Sci Eng: C. 2021;118:111391. doi:10.1016/j.msec.2020.111391
  • Srinivasarao B, Oh-ishi K, Ohkubo T, et al. Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering. Acta Mater. 2009;57:3277–3286. doi:10.1016/j.actamat.2009.03.034
  • Enestam S, Bankiewicz D, Tuiremo J, et al. Are NaCl and KCl equally corrosive on superheater materials of steam boilers? FUEL. 2013;104:294–306. doi:10.1016/j.fuel.2012.07.020
  • Liu X, Yang H, Liu Y, et al. Comparative studies on degradation behavior of pure zinc in various simulated body fluids. JOM. 2019;71:1414–1425. doi:10.1007/s11837-019-03357-3
  • Liu L, Meng Y, Dong C, et al. Initial formation of corrosion products on pure zinc in simulated body fluid. J Mater Sci Technol. 2018;34:2271–2282. doi:10.1016/j.jmst.2018.05.005
  • Yang H, Jia B, Zhang Z, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun. 2020;11:401. doi:10.1038/s41467-019-14153-7
  • Ling CR, Li Q, Zhang Z, et al. Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion. Int J Extreme Manuf. 2024;6:015001.
  • Erinc M, Sillekens WH, Mannens R, et al. Applicability of existing magnesium alloys as biomedical implant materials. In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MQ, editors. Magnesium Technology. San Francisco, Warrendale, PA: Minerals, Metals and Materials Scociety; 2009. p. 209–14.
  • Cho SY, Chae S, Choi KW, et al. Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants. J Biomed Mater Res B: Appl Biomater. 2013;101B:201–212. doi:10.1002/jbm.b.32813
  • Li HF, Xie XH, Zheng YF, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci Rep. 2015;5:10719.
  • Qin Y, Wen P, Xia D, et al. Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn. Addit Manuf. 2020;33:101134. doi:10.1016/j.addma.2020.101134
  • Osório WR, Freire CM, Garcia A. The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Mater Sci Eng A Struct Mater: Prop Microstruct Process. 2005;402:22–32. doi:10.1016/j.msea.2005.02.094
  • Zhou YL, Luo D, Hu WY, et al. Compressive properties of Hot-rolled Mg-Zr-Ca alloys for biomedical applications. Adv Mat Res. 2011;197:56–59. doi:10.4028/www.scientific.net/AMR.197-198.56
  • Bao Y, Zhang M, Liu Y, et al. High strength, low modulus and biocompatible porous Ti–Mo–Fe alloys. J Porous Mater. 2014;21:913–919. doi:10.1007/s10934-014-9837-0
  • Yang H, Qu X, Lin W, et al. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater. 2018;71:200–214. doi:10.1016/j.actbio.2018.03.007
  • Zheng YF, Gu XN, Witte F. Biodegradable metals, materials science and engineering: R. Reports. 2014;77:1–34.
  • Bowen PK, Seitz J, Guillory NRJ, et al. Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J Biomed Mater Res Part B Appl Biomater. 2018;106:245–258. doi:10.1002/jbm.b.33850
  • Lin Z, Sun X, Yang H. The role of antibacterial metallic elements in simultaneously improving the corrosion resistance and antibacterial activity of magnesium alloys. Mater Des. 2021;198:109350. doi:10.1016/j.matdes.2020.109350