593
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling and researching the evolution of stress during arc-directed energy deposition (ADED) hybrid inter-layer hammering

, , , &
Article: e2319435 | Received 04 Nov 2023, Accepted 09 Feb 2024, Published online: 21 Feb 2024

References

  • Williams SW, Martina F. Wire+ air additive manufacture[J]. Materials Science And Technology, IoM, Bedford, England; 2015.
  • Ding J. Thermo-mechanical analysis of wire and arc additive manufacturing process[D]. Cranfield, Bedfordshire: Cranfield University; 2012.
  • Brust FW, Kim DS. Mitigating welding residual stress and deformation[M]//Processes and mechanisms of welding residual stress and deformation. Woodhead Publishing; 2005:264–294. doi:10.1533/9781845690939.2.264
  • Mughal MP, Mufti RA, Fawad H. The mechanical effects of deposition patterns in welding-based layered manufacturing[J]. Proc Inst Mech Eng, Part B: J Eng Manuf. 2007;221(10):1499–1509. doi:10.1243/09544054JEM783
  • Chigilipalli BK, Veeramani A. An experimental investigation and neuro-fuzzy modeling to ascertain metal deposition parameters for the wire arc additive manufacturing of Incoloy 825[J]. CIRP J Manuf Sci Technol. 2022;38:386–400. doi:10.1016/j.cirpj.2022.05.008
  • Sun L, Ren X, He J, et al. A bead sequence-driven deposition pattern evaluation criterion for lowering residual stresses in additive manufacturing[J]. Addit Manuf. 2021;48:102424. doi:10.1016/j.addma.2021.102424
  • Gornyakov V, Ding J, Sun Y, et al. Understanding and designing post-build rolling for mitigation of residual stress and deformation in wire arc additively manufactured components[J]. Mater Des. 2022;213:110335. doi:10.1016/j.matdes.2021.110335
  • Shen H, Lin J, Zhou Z, et al. Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing[J]. J Manuf Process. 2022;75:331–345. doi:10.1016/j.jmapro.2022.01.018
  • Goviazin GG, Rittel D, Shirizly A. Achieving high strength with low residual stress in WAAM SS316L using flow-forming and heat treatment[J]. Mater Sci Eng A. 2023;873:145043. doi:10.1016/j.msea.2023.145043
  • Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. J Mater Process Technol. 2013;213(10):1782–1791. doi:10.1016/j.jmatprotec.2013.04.012
  • Martina F, Roy MJ, Szost BA, et al. Residual stress of as-deposited and rolled wire+ arc additive manufacturing Ti–6Al–4 V components[J]. Mater Sci Technol. 2016;32(14):1439–1448. doi:10.1080/02670836.2016.1142704
  • Colegrove P A, Martina F, Roy MJ, et al. High pressure interpass rolling of wire+ arc additively manufactured titanium components[J]. Adv Mat Res. 2014;996:694–700. doi:10.4028/www.scientific.net/AMR.996.694
  • Abbaszadeh M, Hönnige JR, Martina F, et al. Numerical investigation of the effect of rolling on the localized stress and strain induction for wire+ arc additive manufactured structures[J]. J Mater Eng Perform. 2019;28:4931–4942. doi:10.1007/s11665-019-04249-y
  • Gornyakov V, Sun Y, Ding J, et al. Computationally efficient models of high pressure rolling for wire arc additively manufactured components[J]. Appl Sci. 2021;11(1):402. doi:10.3390/app11010402
  • Gornyakov V, Sun Y, Ding J, et al. Modelling and optimizing hybrid process of wire arc additive manufacturing and high-pressure rolling[J]. Mater Des. 2022;223:111121. doi:10.1016/j.matdes.2022.111121
  • Tangestani R, Farrahi GH, Shishegar M, et al. Effects of vertical and pinch rolling on residual stress distributions in wire and arc additively manufactured components[J]. J Mater Eng Perform. 2020;29(4):2073–2084. doi:10.1007/s11665-020-04767-0
  • Zhou S, Wang J, Yang G, et al. Periodic microstructure of Al-Mg alloy fabricated by inter-layer hammering hybrid wire arc additive manufacturing: Formation mechanism, microstructural and mechanical characterization[J]. Mater Sci Eng A. 2022:144314. doi:10.1016/j.msea.2022.144314
  • Jin W, Zhang C, Jin S, et al. Wire arc additive manufacturing of stainless steels: a review. Appl Sci. 2020;10:1563. doi:10.3390/app10051563
  • Lin Z, Song K, Yu X. A review on wire and arc additive manufacturing of titanium alloy[J]. J Manuf Process. 2021;70:24–45. doi:10.1016/j.jmapro.2021.08.018
  • Derekar KS, Ahmad B, Zhang X, et al. Effects of process variants on residual stresses in Wire Arc additive manufacturing of Aluminum Alloy 5183[J]. J Manuf Sci Eng. 2022;144(7). doi:10.1115/1.4052930
  • Asala G, Khan AK, Andersson J, et al. Microstructural analyses of ATI 718Plus® produced by wire-ARC additive manufacturing process[J]. Metall Mater Trans A. 2017;48(9):4211–4228. doi:10.1007/s11661-017-4162-2
  • Kalpakjian S. Manufacturing engineering and technology[M]; 1995.
  • Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metall Trans B. 1984;15(2):299–305.
  • Fang X, Zhang L, Yang J, et al. Effect of characteristic substrate parameters on the deposition geometry of CMT additive manufactured Al-6.3% Cu alloy[J]. Appl Therm Eng. 2019;162:114302. doi:10.1016/j.applthermaleng.2019.114302
  • Fitzpatrick ME, Fry AT, Holdway P, et al. Determination of residual stresses by X-ray diffraction[J]; 2005.
  • Krawitz AD, Brune JE, Schmank MJ. Residual stress and stress relaxation[J]. Kula and V. Weiss eds, 1982: 139.
  • Cullity BD. Elements of X-ray Diffraction[M]. Boston, Massachusetts: Addison-Wesley Publishing; 1956.
  • Teixeira V, Andritschky M, Fischer W, et al. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings[J]. Surf Coat Technol. 1999;120:103–111. doi:10.1016/S0257-8972(99)00341-2
  • Zhang W, Guo D, Wang L, et al. X-ray diffraction measurements and computational prediction of residual stress mitigation scanning strategies in powder bed fusion additive manufacturing[J]. Addit Manuf. 2023;61:103275. doi:10.1016/j.addma.2022.103275
  • Muhammad NA, Geng P, Wu CS, et al. Unravelling the ultrasonic effect on residual stress and microstructure in dissimilar ultrasonic-assisted friction stir welding of Al/Mg alloys[J]. Int J Mach Tools Manuf. 2023;186:104004. doi:10.1016/j.jallcom.2023.169315
  • Luo Q, Jones AH. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique[J]. Surf Coat Technol. 2010;205(5):1403–1408. doi:10.1016/j.surfcoat.2010.07.108
  • Withers PJ, Bhadeshia H. Residual stress. Part 2–Nature and origins[J]. Mater Sci Technol. 2001;17(4):366–375. doi:10.1179/026708301101510087