1,447
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Large-format additive manufacturing of polymers: a review of fabrication processes, materials, and design

, , , &
Article: e2336160 | Received 27 Sep 2023, Accepted 21 Mar 2024, Published online: 04 Apr 2024

References

  • Precedence Research. 3D printing market – global industry analysis, size, share, growth, trends, regional outlook, and forecast 2023–2032. Precedence Research. [cited 2023 July 26]. Available from: https://www.precedenceresearch.com/3d-printing-market
  • Marketsandmarkets. 3D printing market size, share & industry growth analysis by offering – global growth driver and industry forecast to 2028. Marketsandmarkets. [cited 2023 July 26]. Available from: https://www.marketsandmarkets.com/Market-Reports/3d-printing-market-1276.html?gclid = Cj0KCQjw5f2lBhCkARIsAHeTvlhIgQ-xXwJTI5TKNLCSti-s-QpPSM39NAFwnj0TtAQz_s4sfaaNM7kaAi6QEALw_wcB
  • Shah J, Snider B, Clarke T, et al. Large-scale 3D printers for additive manufacturing: design considerations and challenges. Int J Adv Manuf Technol. Oct. 2019;104(9):3679–3693. doi:10.1007/s00170-019-04074-6
  • Gebler M, Schoot Uiterkamp AJM, Visser C. A global sustainability perspective on 3D printing technologies. Energy Policy. Nov. 2014;74:158–167. doi:10.1016/j.enpol.2014.08.033
  • Ngo TD, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng. Jun. 2018;143:172–196. doi:10.1016/j.compositesb.2018.02.012
  • Saleh Alghamdi S, John S, Roy Choudhury N, et al. Additive manufacturing of polymer materials: progress, promise and challenges. Polymers. 2021;13(5):753. doi:10.3390/polym13050753
  • Najmon JC, Raeisi S, Tovar A. 2 – Review of additive manufacturing technologies and applications in the aerospace industry. In: Froes F, Boyer R, editors. Additive manufacturing for the aerospace industry. Amsterdam: Elsevier; 2019. p. 7–31. doi:10.1016/B978-0-12-814062-8.00002-9
  • Salifu S, Desai D, Ogunbiyi O, et al. Recent development in the additive manufacturing of polymer-based composites for automotive structures – a review. Int J Adv Manuf Technol. Apr. 2022;119(11):6877–6891. doi:10.1007/s00170-021-08569-z
  • Tiwary VK, Arunkumar P, Malik R. An overview on joining/welding as post-processing technique to circumvent the build volume limitation of an FDM-3D printer. Rapid Prototyp J. Jan. 2021;27(4):808–821. doi:10.1108/RPJ-10-2020-0265
  • Love LJ, Duty CE, Post BK, et al. Breaking barriers in polymer additive manufacturing. Oak Ridge (TN): Oak Ridge National Lab. (ORNL); 2015.
  • Moreno Nieto D, Molina SI. Large-format fused deposition additive manufacturing: a review. Rapid Prototyp J. Jan. 2020;26(5):793–799. doi:10.1108/RPJ-05-2018-0126
  • Vicente CMS, Sardinha M, Reis L, et al. Large-format additive manufacturing of polymer extrusion-based deposition systems: review and applications. Prog Addit Manuf. Jan. 2023;8(6):1257–1280. doi:10.1007/s40964-023-00397-9
  • Pignatelli F, Percoco G. An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing. Prog Addit Manuf. Dec. 2022;7(6):1363–1377. doi:10.1007/s40964-022-00309-3
  • Urhal P, Weightman A, Diver C, et al. Robot assisted additive manufacturing: a review. Robot Comput Integr Manuf. Oct. 2019;59:335–345. doi:10.1016/j.rcim.2019.05.005
  • Pagac M, Hajnys J, Ma QP, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers. 2021;13(4):598. doi:10.3390/polym13040598
  • Maurel A, Martinez AC, Grugeon S, et al. Toward high resolution 3D printing of shape-conformable batteries via vat photopolymerization: review and perspective. IEEE Access. 2021;9:140654–140666. doi:10.1109/ACCESS.2021.3119533
  • CMET. Rapid Meister ATOMm-8000. CMET. [cited 2023 July 26]. Available from: https://www.cmet.co.jp/en-rapid-meister/
  • Aniwaa. SLA2400. Aniwaa. [cited 2023 July 26]. Available from: https://www.aniwaa.com/product/3d-printers/protofab-sla2400/
  • Hornbeck LJ. Digital light processing for high-brightness high-resolution applications. Presented at the Proc. SPIE, San Jose, CA, May 1997. p. 27–40. doi:10.1117/12.273880
  • Düzgün D, Nadolny K. Continuous liquid interface production (CLIP) method for rapid prototyping. JMEE. Apr. 2018;2(1):5–12. doi:10.30464/jmee.2018.2.1.5
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. Mar. 2015;347(6228):1349–1352. doi:10.1126/science.aaa2397
  • Emami MM, Barazandeh F, Yaghmaie F. Scanning-projection based stereolithography: method and structure. Sens Actuators A. Oct. 2014;218:116–124. doi:10.1016/j.sna.2014.08.002
  • Boston Micro Fabrication (BMF). microArch 3D printers datasheet. Boston Micro Fabrication (BMF). [cited 2023 July 26]. Available from: https://bmf3d.com/wp-content/uploads/2022/11/BMFPrintersDatasheet_110822.pdf
  • Huang J, Zhang B, Xiao J, et al. An approach to improve the resolution of DLP 3D printing by parallel mechanism. Appl Sci. 2022;12(24):12905. doi:10.3390/app122412905
  • Wu L, Zhao L, Jian M, et al. EHMP-DLP: multi-projector DLP with energy homogenization for large-size 3D printing. Rapid Prototyp J. Jan. 2018;24(9):1500–1510. doi:10.1108/RPJ-04-2017-0060
  • Wang Y, Chen R, Liu Y. A double mask projection exposure method for stereolithography. Sens Actuators A. Oct. 2020;314:112228. doi:10.1016/j.sna.2020.112228
  • Walker DA, Hedrick JL, Mirkin CA. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science. Oct. 2019;366(6463):360–364. doi:10.1126/science.aax1562
  • Lee MP, Cooper GJT, Hinkley T, et al. Development of a 3D printer using scanning projection stereolithography. Sci Rep. Apr. 2015;5(1):9875. doi:10.1038/srep09875
  • Awad A, Fina F, Goyanes A, et al. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. Aug. 2020;586:119594. doi:10.1016/j.ijpharm.2020.119594
  • Sing SL, Huang S, Goh GD, et al. Emerging metallic systems for additive manufacturing: in-situ alloying and multi-metal processing in laser powder bed fusion. Prog Mater Sci. Jun. 2021;119:100795. doi:10.1016/j.pmatsci.2021.100795
  • Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. Jan. 2012;28(1):1–14. doi:10.1016/S1005-0302(12)60016-4
  • Goh GL, Dikshit V, Koneru R, et al. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. Int J Adv Manuf Technol. May 2022;120(3):2573–2586. doi:10.1007/s00170-022-08831-y
  • Tiwari SK, Pande S, Agrawal S, et al. Selection of selective laser sintering materials for different applications. Rapid Prototyp J. Jan. 2015;21(6):630–648. doi:10.1108/RPJ-03-2013-0027
  • Holmes M. Additive manufacturing continues composites market growth. Reinf Plast. Nov. 2019;63(6):296–301. doi:10.1016/j.repl.2018.12.070
  • Fiegl T, Franke M, Raza A, et al. Effect of AlSi10Mg0.4 long-term reused powder in PBF-LB/M on the mechanical properties. Mater Des. Dec. 2021;212:110176. doi:10.1016/j.matdes.2021.110176
  • Trumpf. TruPrint 5000. Trumpf. Available from: https://www.trumpf.com/en_SG/products/machines-systems/additive-production-systems/truprint-5000/
  • Kanyilmaz A, Demir AG, Chierici M, et al. Role of metal 3D printing to increase quality and resource-efficiency in the construction sector. Addit Manuf. Feb. 2022;50:102541. doi:10.1016/j.addma.2021.102541
  • Fathi-Hafshejani P, Soltani-Tehrani A, Shamsaei N, et al. Laser incidence angle influence on energy density variations, surface roughness, and porosity of additively manufactured parts. Addit Manuf. Feb. 2022;50:102572. doi:10.1016/j.addma.2021.102572
  • Li S, Yang J, Wang Z. Multi-laser powder bed fusion of Ti-6.5Al-2Zr-Mo-V alloy powder: defect formation mechanism and microstructural evolution. Powder Technol. May 2021;384:100–111. doi:10.1016/j.powtec.2021.02.010
  • Yang F, Zobeiry N, Mamidala R, et al. A review of aging, degradation, and reusability of PA12 powders in selective laser sintering additive manufacturing. Mater Today Commun. Mar. 2023;34:105279. doi:10.1016/j.mtcomm.2022.105279
  • Yang F, Jiang T, Lalier G, et al. Process control of surface quality and part microstructure in selective laser sintering involving highly degraded polyamide 12 materials. Polym Test. Jan. 2021;93:106920. doi:10.1016/j.polymertesting.2020.106920
  • Fraunhofer. Additive manufacturing of large components using LPBF. futureAM – next generation additive manufacturing. [cited 2023 Jul 25]. Available from: https://www.futuream.fraunhofer.de/en/news_and_media/video-lpbf-scalable-machine-concept.html
  • Goh GD, Yap YL, Tan HKJ, et al. Process–structure–properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci. Mar. 2020;45(2):113–133. doi:10.1080/10408436.2018.1549977
  • Love L, Roschli A, Post BK, et al. Large format, large diameter filament additive (FFF) manufacturing-phase 2. Oak Ridge (TN): Oak Ridge National Lab. (ORNL); 2022.
  • Venkataraman N, Rangarajan S, Matthewson MJ, et al. Feedstock material property – process relationships in fused deposition of ceramics (FDC). Rapid Prototyp J. Jan. 2000;6(4):244–253. doi:10.1108/13552540010373344
  • Volpato N, Kretschek D, Foggiatto JA, et al. Experimental analysis of an extrusion system for additive manufacturing based on polymer pellets. Int J Adv Manuf Technol. Dec. 2015;81(9):1519–1531. doi:10.1007/s00170-015-7300-2
  • Roschli A, Chesser P, Jackson A, et al. Increasing Z-strength and testing the capabilities of twin screw extruders in large format polymer additive manufacturing. Oak Ridge (TN): Oak Ridge National Lab. (ORNL); 2022.
  • Woern AL, Byard DJ, Oakley RB, et al. Fused particle fabrication 3-D printing: recycled materials’ optimization and mechanical properties. Materials. 2018;11(8):1413. doi:10.3390/ma11081413
  • Sudbury Z, Duty C, Kunc V, et al. Characterizing material transition for functionally graded material using big area additive manufacturing. 2016 International Solid Freeform Fabrication Symposium, Austin, University of Texas at Austin; 2016.
  • Brackett J, Yan Y, Cauthen D, et al. Development of functionally graded material capabilities in large-scale extrusion deposition additive manufacturing. 2019 International Solid Freeform Fabrication Symposium, Austin, University of Texas at Austin; 2019.
  • Brackett J, Yan Y, Cauthen D, et al. Characterizing material transitions in large-scale additive manufacturing. Addit Manuf. Feb. 2021;38:101750. doi:10.1016/j.addma.2020.101750
  • Tseng J-W, Liu CY, Yen YK, et al. Screw extrusion-based additive manufacturing of PEEK. Mater Des. Feb. 2018;140:209–221. doi:10.1016/j.matdes.2017.11.032
  • Georgopoulou A, Clemens F. Pellet-based fused deposition modeling for the development of soft compliant robotic grippers with integrated sensing elements. Flex Print Electron. May 2022;7(2):025010. doi:10.1088/2058-8585/ac6f34
  • Liu X, Chi B, Jiao Z, et al. A large-scale double-stage-screw 3D printer for fused deposition of plastic pellets. J Appl Polym Sci. Aug. 2017;134(31):45147. doi:10.1002/app.45147
  • Extrudinaire. Extrudinaire. [cited 2023 Jul 25]. Available from: https://extrudinaire.com/extrudinaire-pellet-extruder/
  • Wu C, Dai C, Fang G, et al. RoboFDM: a robotic system for support-free fabrication using FDM. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Jun. 2017. p. 1175–1180. doi:10.1109/ICRA.2017.7989140.
  • Jing X, Lv D, Xie F, et al. A robotic 3D printing system for supporting-free manufacturing of complex model based on FDM technology. Ind Robot Int J Robot Res Appl. Jan. 2023;50(2):314–325. doi:10.1108/IR-05-2022-0136
  • Kwon H, Eichenhofer M, Kyttas T, et al. Digital composites: robotic 3D printing of continuous carbon fiber-reinforced plastics for functionally-graded building components. In: Willmann J, Block P, Hutter M, et al., editors. Robotic fabrication in architecture, art and design 2018. Cham: Springer International Publishing; 2019. p. 363–376.
  • Dörfler K, Dielemans G, Lachmayer L, et al. Additive manufacturing using mobile robots: opportunities and challenges for building construction. Cem Concr Res. Aug. 2022;158:106772. doi:10.1016/j.cemconres.2022.106772
  • Kubalak JR, Wicks AL, Williams CB. Using multi-axis material extrusion to improve mechanical properties through surface reinforcement. Virtual Phys Prototyp. Jan. 2018;13(1):32–38. doi:10.1080/17452759.2017.1392686
  • Yuan PF, Meng H, Yu L, et al. Robotic multi-dimensional printing based on structural performance. In: Reinhardt D, Saunders R, Burry J, editors. Robotic fabrication in architecture, art and design 2016. Cham: Springer International Publishing; 2016. p. 92–105. doi:10.1007/978-3-319-26378-6_7
  • Giftthaler M, Sandy T, Dörfler K, et al. Mobile robotic fabrication at 1:1 scale: the in situ fabricator. Constr Robot. Dec. 2017;1(1):3–14. doi:10.1007/s41693-017-0003-5
  • Tiryaki ME, Zhang X, Pham Q-C. Printing-while-moving: a new paradigm for large-scale robotic 3D Printing. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, Nov. 2019. p. 2286–2291. doi:10.1109/IROS40897.2019.8967524.
  • Bellicoso CD, Krämer K, Stäuble M, et al. ALMA – articulated locomotion and manipulation for a torque-controllable robot. 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, May 2019. p. 8477–8483. doi:10.1109/ICRA.2019.8794273.
  • Orbital Composites. Orbital F-Print large-scale, on-site, anywhere. Orbital Composites. [cited 2023 Jul 25]. Available from: https://www.orbitalcomposites.com/orbital-f
  • Gardiner G. Orbital composites to demonstrate containerized 3D printing robots for AM wind blade manufacture. CompositesWorld. [cited 2023 Jul 25]. Available from: https://www.compositesworld.com/news/orbital-composites-to-demonstrate-containerized-3d-printing-robots-for-am-wind-blade-manufacture
  • Clarke C. Ford thinking laterally with stratasys’ infinite build 3D printing machine. 3Dprint.com. [cited 2023 Jul 25]. Available from: https://3dprintingindustry.com/news/ford-thinking-laterally-stratasys-infinite-build-3d-printing-machine-107273/
  • Nehls G. Thermwood demonstrates vertical layer print additive technology. CompositesWorld. Available from: https://www.compositesworld.com/news/thermwood-demonstrates-vertical-layer-print-additive-technology
  • Marrett D. Thermwood adds angle layer printing to its LSAM large scale additive systems. Thermwood. [cited 2023 July 26]. Available from: https://blog.thermwood.com/thermwood-adds-angle-layer-printing-to-its-lsam-large-scale-additive-systems-blog-11-30-21
  • Largix. ‘This works 25 h a day’ unleash your manpower dependencies. Largix. [cited 2023 Jul 25]. Available from: https://largix.com/
  • Petsiuk A, Lavu B, Dick R, et al. Waste plastic direct extrusion hangprinter. Inventions. 2022;7(3):70. doi:10.3390/inventions7030070
  • Chu W-S, Kim M-S, Jang K-H, et al. From design for manufacturing (DFM) to manufacturing for design (MFD) via hybrid manufacturing and smart factory: a review and perspective of paradigm shift. Int J Precis Eng Manuf Green Technol. Apr. 2016;3(2):209–222. doi:10.1007/s40684-016-0028-0
  • Zhu Z, Dhokia VG, Nassehi A, et al. A review of hybrid manufacturing processes – state of the art and future perspectives. Int J Computer Integr Manuf. Jul. 2013;26(7):596–615. doi:10.1080/0951192X.2012.749530
  • Li L, Haghighi A, Yang Y. A novel 6-axis hybrid additive-subtractive manufacturing process: design and case studies. J Manuf Process. Jun. 2018;33:150–160. doi:10.1016/j.jmapro.2018.05.008
  • Keating S, Oxman N. Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf. Dec. 2013;29(6):439–448. doi:10.1016/j.rcim.2013.05.001
  • Ludvigsen T. HangPrinter. [cited 2023 Aug 10]. Available from: https://hangprinter.org/
  • Barnett E, Gosselin C. Large-scale 3D printing with a cable-suspended robot. Addit Manuf. Jul. 2015;7:27–44. doi:10.1016/j.addma.2015.05.001
  • Lin D, Mottola G. Dynamic launch trajectory planning of a cable-suspended translational parallel robot using point-to-point motions. Machines. 2023;11(2):224. doi:10.3390/machines11020224
  • Ed H. 3D printers overcome supply challenges. Aero-mag. [cited 2023 Aug 22]. Available from: https://www.aero-mag.com/3d-printers-overcome-supply-challenges
  • Saunders S. BigRep 3D printing used to fabricate rotor blade part for royal navy helicopter. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/298588/bigrep-3d-printing-used-to-fabricate-main-rotor-blade-restraint-cradle-for-helicopter/
  • Ceadgroup. 3D printing molds and tooling for aviation and aerospace applications. [cited 2023 Aug 22]. Available from: https://ceadgroup.com/portfolio-items/3d-printing-molds-and-tooling-for-aviation-and-aerospace-applications/
  • Michael M-H. Ingersoll 3D prints massive helicopter blade tool for bell helicopter. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/280199/ingersoll-3d-prints-massive-helicopter-blade-tool-for-bell-helicopter/
  • Ceadgroup. Fully 3D printed monocoque for CO2 neutral car zem. CEAD. [cited 2023 Aug 22]. Available from: https://ceadgroup.com/portfolio-items/fully-3d-printed-monocoque-for-co2-neutral-car-zem/
  • Oztan C, Coverstone V. Utilization of additive manufacturing in hybrid rocket technology: a review. Acta Astronaut. Mar. 2021;180:130–140. doi:10.1016/j.actaastro.2020.11.024
  • Leach N. 3D printing in space. Archit Des. Nov. 2014;84(6):108–113. doi:10.1002/ad.1840
  • Shemelya C, De La Rosa A, Torrado AR, et al. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit Manuf. Aug. 2017;16:186–196. doi:10.1016/j.addma.2017.05.012
  • Ceadgroup. Mold for a hydrogen fueled powered city car. CEAD. [cited 2023 Aug 22]. Available from: https://ceadgroup.com/portfolio-items/mold-for-a-hydrogen-fueled-powered-city-car/
  • Molitch-Hou M. F1 champ Fernando Alonso debuts 3D printed e-bike by Arevo. [cited 2023 Aug 22]. Available from: https://3dprint.com/290985/f1-champ-fernando-alonso-debuts-3d-printed-e-bike-by-arevo/
  • Kremenetsky M. Canada’s auto parts suppliers to debut EV with 3D printed chassis. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/296680/canadas-auto-parts-suppliers-to-debut-ev-with-3d-printed-chassis/
  • Scott C. Nowlab’s sleek motorcycle concept is entirely 3D printed. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/230263/nowlabs-sleek-motorcycle-concept-is-entirely-3d-printed/
  • Everett H. Shell reaps cost and lead time benefits of 3D printing obsolete parts. 3D Printing Industry. Available from: https://3dprintingindustry.com/news/shell-reaps-cost-and-lead-time-benefits-of-3d-printing-obsolete-parts-207955/
  • Harangozó O. Jamade and Bigrep present Amazea, their 3D printed underwater scooter. [cited 2023 Aug 22]. Available from: https://3dprintingindustry.com/news/jamade-and-bigrep-present-amazea-their-3d-printed-underwater-scooter-167625/
  • O’Neal B. University of Maine’s composites center: researchers awarded three Guinness World Records in 3D printing. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/256221/university-maines-composites-center-researchers-awarded-three-guinness-world-records-in-3d-printing/
  • Kremenetsky M. Al Seer marine debuts first 3D printed drone boat. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/298170/lal-seer-marine-debuts-first-3d-printed-drone-boat/
  • Sanuders S. Large robotic 3D printing builds sailboat hull from recycled material. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/284554/large-scale-robotic-3d-printing-used-to-make-sailboat-hull-out-of-recycled-material/
  • Moreno Nieto D, Casal López V, Molina SI. Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf. Oct. 2018;23:79–85. doi:10.1016/j.addma.2018.07.012
  • Molitch-Hou M. UMaine 3D printing massive wind turbine molds. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/278477/umaine-to-3d-printing-massive-wind-turbine-molds/
  • Sanuders S. BigRep and NOWLAB show off green thumb with 3D printed green wall prototype. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/247187/bigrep-nowlab-3d-printed-green-wall-prototype/
  • Peels J. Branch technology 3D prints large-scale ABS sculpture. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/276776/branch-technology-3d-prints-large-scale-abs-sculpture/
  • Peels J. Reinforced plastic 3D printed footbridge by DSM and Royal HaskoningDHV to be installed 2020. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/269945/worlds-first-frp-3d-printed-footbridge-to-be-built-by-dsm-and-royal-haskoningdhv/
  • Listek V. Medieval Italian tower reborn as hotel suite with 3D printed furniture and decor. [cited 2023 Aug 22]. Available from: https://3dprint.com/290451/medieval-italian-tower-reborn-as-hotel-suite-with-3d-printed-furniture-and-decor/
  • O’Neal B. TU Delft: 3D printed chaise lounge morphs into a bed. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/226131/tu-delft-3d-printed-chaise-lounge-morphs-bed/
  • Kremenetsky M. The new raw’s 3D printed chair highlights the potential for infinitely recyclable materials. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/286663/the-new-raws-3d-printed-chair-highlights-the-potential-for-infinitely-recyclable-materials/
  • Saunders S. Interior furnishings 3D printed from old drink cartons displayed at Milan design week. 3Dprint.com. [cited 2023 Aug 22]. Available from: https://3dprint.com/291786/aectual-customizable-circular-3d-printed-interior-furnishings-on-display-at-milan-design-week/
  • Saba N, Jawaid M. A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J Ind Eng Chem. Nov. 2018;67:1–11. doi:10.1016/j.jiec.2018.06.018
  • Andrzejewski J, Mohanty AK, Misra M. Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials. Compos Part B Eng. Nov. 2020;200:108319. doi:10.1016/j.compositesb.2020.108319
  • Zanjanijam AR, Major I, Lyons JG, et al. Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers. 2020;12(8):1665. doi:10.3390/polym12081665
  • Hu B, Duan X, Xing Z, et al. Improved design of fused deposition modeling equipment for 3D printing of high-performance PEEK parts. Mech Mater. Oct. 2019;137:103139. doi:10.1016/j.mechmat.2019.103139
  • Alsoufi MS, Elsayed AE. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system. Int J Mech Mechatron Eng. 2017;17(11):7–16.
  • Yoon PJ, Fornes TD, Paul DR. Thermal expansion behavior of nylon 6 nanocomposites. Polymer. Jan. 2002;43(25):6727–6741. doi:10.1016/S0032-3861(02)00638-9
  • Farahani RD, Dubé M, Therriault D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater. Jul. 2016;28(28):5794–5821. doi:10.1002/adma.201506215
  • Credi C, Bernasconi R, Levi M, et al. Self-activating metal-polymer composites for the straightforward selective metallization of 3D printed parts by stereolithography. J Mater Res Technol. Jan. 2023;22:1855–1867. doi:10.1016/j.jmrt.2022.12.035
  • Akhoundi B, Behravesh AH, Bagheri Saed A. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. J Reinf Plast Compos. Feb. 2019;38(3):99–116. doi:10.1177/0731684418807300
  • Lu ZL, Lu F, Cao JW, et al. Manufacturing properties of turbine blades of carbon fiber-reinforced SiC composite based on stereolithography. Mater Manuf Processes. Feb. 2014;29(2):201–209. doi:10.1080/10426914.2013.872269
  • Goh GD, Yap YL, Agarwala S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol. Jan. 2019;4(1):1800271. doi:10.1002/admt.201800271
  • Goh GD, Goh GL, Lyu Z, et al. 3D printing of robotic soft grippers: toward smart actuation and sensing. Adv Mater Technol. Nov. 2022;7(11):2101672. doi:10.1002/admt.202101672
  • Freund R, Watschke H, Heubach J, et al. Determination of influencing factors on interface strength of additively manufactured multi-material parts by material extrusion. Appl Sci. 2019;9(9):1782. doi:10.3390/app9091782
  • Hasanov S, Gupta A, Nasirov A, et al. Mechanical characterization of functionally graded materials produced by the fused filament fabrication process. J Manuf Process. Oct. 2020;58:923–935. doi:10.1016/j.jmapro.2020.09.011
  • Chacon J, Caminero M, Garcia-Plaza E, et al. Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des. Jun. 2017;124:143–157. doi:10.1016/j.matdes.2017.03.065
  • Yang C, Tian X, Liu T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp J. 2017;23(1):209–215. doi:10.1108/RPJ-08-2015-0098
  • Goh GD, Toh W, Yap YL, et al. Additively manufactured continuous carbon fiber-reinforced thermoplastic for topology optimized unmanned aerial vehicle structures. Compos Part B Eng. Jul. 2021;216:108840. doi:10.1016/j.compositesb.2021.108840
  • Liaw C-Y, Tolbert JW, Chow LW, et al. Interlayer bonding strength of 3D printed PEEK specimens. Soft Matter. 2021;17(18):4775–4789. doi:10.1039/D1SM00417D
  • Steyrer B, Busetti B, Harakály G, et al. Hot lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Addit Manuf. May 2018;21:209–214. doi:10.1016/j.addma.2018.03.013
  • Keßler A, Hickel R, Ilie N. In vitro investigation of the influence of printing direction on the flexural strength, flexural modulus and fractographic analysis of 3D-printed temporary materials. Dent Mater J. 2021;40(3):641–649. doi:10.4012/dmj.2020-147
  • Aznarte E, Ayranci C, Qureshi AJ. Digital light processing (DLP): Anisotropic tensile considerations. 2017 International Solid Freeform Fabrication Symposium. Austin: University of Texas at Austin; 2017.
  • Seppala JE, Migler KD. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf. Oct. 2016;12:71–76. doi:10.1016/j.addma.2016.06.007
  • McIlroy C, Olmsted PD. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. Aug. 2017;123:376–391. doi:10.1016/j.polymer.2017.06.051
  • Goh GD, Dikshit V, An J, et al. Process-structure-property of additively manufactured continuous carbon fiber reinforced thermoplastic: an investigation of mode I interlaminar fracture toughness. Mech Adv Mater Struct. Apr. 2022;29(10):1418–1430. doi:10.1080/15376494.2020.1821266
  • Ahmed SW, Hussain G, Altaf K, et al. On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers. 2020;12(9):2155. doi:10.3390/polym12092155
  • Shaffer S, Yang K, Vargas J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. Nov. 2014;55(23):5969–5979. doi:10.1016/j.polymer.2014.07.054
  • Sweeney CB, Lackey BA, Pospisil MJ, et al. Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci Adv. 2017:3(6):e1700262. doi:10.1126/sciadv.1700262
  • Prajapati H, Salvi SS, Ravoori D, et al. Improved print quality in fused filament fabrication through localized dispensing of hot air around the deposited filament. Addit Manuf. Apr. 2021;40:101917. doi:10.1016/j.addma.2021.101917
  • Partain SC. Fused deposition modeling with localized pre-deposition heating using forced air [master's thesis]. Montana State University-Bozeman, College of Engineering; 2007.
  • Du J, Wei Z, Wang X, et al. An improved fused deposition modeling process for forming large-size thin-walled parts. J Mater Process Technol. Aug. 2016;234:332–341. doi:10.1016/j.jmatprotec.2016.04.005
  • Ravi AK, Deshpande A, Hsu KH. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process. Oct. 2016;24:179–185. doi:10.1016/j.jmapro.2016.08.007
  • Nycz A, Kishore V, Lindahl J, et al. Controlling substrate temperature with infrared heating to improve mechanical properties of large-scale printed parts. Addit Manuf. May 2020;33:101068. doi:10.1016/j.addma.2020.101068
  • Kishore V, Ajinjeru C, Nycz A, et al. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf. Mar. 2017;14:7–12. doi:10.1016/j.addma.2016.11.008
  • Chesser P, Kunc V, Compton B, et al. Extrusion control for high quality printing on big area additive manufacturing (BAAM) systems. Addit Manuf. Aug. 2019;28:445–455. doi:10.1016/j.addma.2019.05.020
  • Borish M, Post BK, Roschli A, et al. In-situ thermal imaging for single layer build time alteration in large-scale polymer additive manufacturing. Procedia Manuf. 2019;34:482–488.
  • Kim H, Saha SK. Minimizing shrinkage in microstructures printed with projection two-photon lithography. MSEC2022, Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing, West Lafayette, IN, Jun. 2022. doi:10.1115/MSEC2022-86076
  • Goh GD, Hamzah NMB, Yeong WY. Anomaly detection in fused filament fabrication using machine learning. 3D Print Addit Manuf. Jun. 2023;10(3):428–437. doi:10.1089/3dp.2021.0231
  • Yang S, Chen Q, Wang L, et al. In situ defect detection and feedback control with three-dimensional extrusion-based bioprinter-associated optical coherence tomography. Int J Bioprinting. 2023;9(1):624.
  • Xu J-H, Wang L-X, Zhang S-Y, et al. Predictive defect detection for prototype additive manufacturing based on multi-layer susceptibility discrimination. Adv Manuf. Sep. 2023;11(3):407–427. doi:10.1007/s40436-023-00446-0
  • Goh GD, Sing SL, Yeong WY. A review on machine learning in 3D printing: applications, potential, and challenges. Artif Intell Rev. Jan. 2021;54(1):63–94. doi:10.1007/s10462-020-09876-9
  • Bhatt PM, Kabir AM, Malhan RK, et al. A robotic cell for multi-resolution additive manufacturing. 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, May 2019, pp. 2800–2807. doi:10.1109/ICRA.2019.8793730.
  • Mhatre PS. Process planning for concurrent multi-nozzle 3D printing. Rochester Institute of Technology; 2019.
  • Bacciaglia A, Ceruti A. Efficient toolpath planning for collaborative material extrusion machines. Rapid Prototyp J. Jan. 2023;29(9):1814–1828. doi:10.1108/RPJ-09-2022-0320
  • Shen H, Pan L, Qian J. Research on large-scale additive manufacturing based on multi-robot collaboration technology. Addit Manuf. Dec. 2019;30:100906. doi:10.1016/j.addma.2019.100906
  • Poudel L, Zhou W, Sha Z. A generative approach for scheduling multi-robot cooperative three-dimensional printing. J Comput Inf Sci Eng. Jun. 2020;20(6):061011. doi:10.1115/1.4047261
  • El-Sayegh S, Romdhane L, Manjikian S. A critical review of 3D printing in construction: benefits, challenges, and risks. Arch Civ Mech Eng. Mar. 2020;20(2):34. doi:10.1007/s43452-020-00038-w
  • Delgado Camacho D, Clayton P, O'Brien WJ, et al. Applications of additive manufacturing in the construction industry – a forward-looking review. Autom Constr. May 2018;89:110–119. doi:10.1016/j.autcon.2017.12.031
  • Lim S, Buswell RA, Valentine PJ, et al. Modelling curved-layered printing paths for fabricating large-scale construction components. Addit Manuf. Oct. 2016;12:216–230. doi:10.1016/j.addma.2016.06.004
  • Bernatas R, Dagreou S, Despax-Ferreres A, et al. Recycling of fiber reinforced composites with a focus on thermoplastic composites. Clean Eng Technol. Dec. 2021;5:100272. doi:10.1016/j.clet.2021.100272
  • Maines EM, Porwal MK, Ellison CJ, et al. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021;23(18):6863–6897. doi:10.1039/D1GC01489G
  • Wölfel B, Seefried A, Allen V, et al. Recycling and reprocessing of thermoplastic polyurethane materials towards nonwoven processing. Polymers. 2020;12(9):1917. doi:10.3390/polym12091917
  • Hagnell MK, Åkermo M. The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials. J Cleaner Prod. Jun. 2019;223:957–968. doi:10.1016/j.jclepro.2019.03.156
  • Guo Y, Chen S, Sun L, et al. Degradable and fully recyclable dynamic thermoset elastomer for 3D-printed wearable electronics. Adv Funct Mater. Feb. 2021;31(9):2009799. doi:10.1002/adfm.202009799
  • Tian X, Liu T, Wang Q, et al. Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Cleaner Prod. Jan. 2017;142:1609–1618. doi:10.1016/j.jclepro.2016.11.139
  • He Q, Zeng Y, Jiang L, et al. Growing recyclable and healable piezoelectric composites in 3D printed bioinspired structure for protective wearable sensor. Nat Commun. Oct. 2023;14(1):6477. doi:10.1038/s41467-023-41740-6
  • Morales MA, Atencio Martinez CL, Maranon A, et al. Development and characterization of rice husk and recycled polypropylene composite filaments for 3D printing. Polymers. 2021;13(7):1067. doi:10.3390/polym13071067
  • Sjölander J, Hallander P, Åkermo M. Forming induced wrinkling of composite laminates: a numerical study on wrinkling mechanisms. Compos A Appl Sci Manuf. Feb. 2016;81:41–51. doi:10.1016/j.compositesa.2015.10.012
  • Clancy G, Peeters D, Oliveri V, et al. A study of the influence of processing parameters on steering of carbon fibre/PEEK tapes using laser-assisted tape placement. Compos Part B Eng. Apr. 2019;163:243–251. doi:10.1016/j.compositesb.2018.11.033
  • Zhang Z, Chen C, Zhang S, et al. Effect of AFP induced triangular gaps on manufacturing quality and stress distribution of composite panels. Compos Sci Technol. Oct. 2023;243:110222. doi:10.1016/j.compscitech.2023.110222
  • Roschli A, Gaul KT, Boulger AM, et al. Designing for big area additive manufacturing. Addit Manuf. Jan. 2019;25:275–285. doi:10.1016/j.addma.2018.11.006
  • Badiee A. Savonia article: design considerations for large scale additive manufacturing, part 1. Savonia. [cited 2024 Feb 13]. Available from: https://www.savonia.fi/en/3d/design-considerations-for-large-scale-additive-manufacturing-part-1/
  • Badiee A. Savonia article: design considerations for large scale additive manufacturing, part 2. Savonia. [cited 2024 Feb 13]. Available from: https://www.savonia.fi/en/3d/design-considerations-for-large-scale-additive-manufacturing-part-2/
  • Vijaya Kumar P, Velmurugan C. Surface treatments and surface modification techniques for 3D built materials. In: Khan MA, Jappes JTW, editors. Innovations in additive manufacturing. Cham: Springer International Publishing; 2022. p. 189–220. doi:10.1007/978-3-030-89401-6_9
  • Kishore V, Chen X, Hassen AA, et al. Post-process annealing of large-scale 3D printed polyphenylene sulfide composites. Addit Manuf. Oct. 2020;35:101387. doi:10.1016/j.addma.2020.101387
  • Dominguez LA, Xu F, Shokrani A, et al. Guidelines when considering pre & post processing of large metal additive manufactured parts. Procedia Manuf. Jan. 2020;51:684–691. doi:10.1016/j.promfg.2020.10.096
  • Moroni G, Petrò S. Design for X-ray computed tomography. Procedia CIRP. Jan. 2019;84:173–178. doi:10.1016/j.procir.2019.04.342