1,002
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Truss-plate hybrid lattice metamaterials with broadband vibration attenuation and enhanced energy absorption

, , , , &
Article: e2345386 | Received 09 Feb 2024, Accepted 12 Apr 2024, Published online: 25 Apr 2024

References

  • Bhudolia SK, Gohel G, Subramanyam ESB, et al. Enhanced impact energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Mater Des. 2021;209:110003, doi:10.1016/j.matdes.2021.110003
  • Huang X, Chang L, Zhao H, et al. Study on craniocerebral dynamics response and helmet protective performance under the blast waves. Mater Des. 2022;224:111408, doi:10.1016/j.matdes.2022.111408
  • Nasim M, Hasan MJ, Galvanetto U. Impact behavior of energy absorbing helmet liners with PA12 lattice structures: a computational study. Int J Mech Sci. 2022;233:107673, doi:10.1016/j.ijmecsci.2022.107673
  • Caserta GD, Iannucci L, Galvanetto U. Shock absorption performance of a motorbike helmet with honeycomb reinforced liner. Compos Struct. 2011;93:2748–2759. doi:10.1016/j.compstruct.2011.05.029
  • Bliven E, Rouhier A, Tsai S, et al. Evaluation of a novel bicycle helmet concept in oblique impact testing. Accid Anal Prev. 2019;124:58–65. doi:10.1016/j.aap.2018.12.017
  • Wang F, Brøns M, Sigmund O. Non-hierarchical architected materials with extreme stiffness and strength. Adv Funct Mater. 2023: 33, doi:10.1002/adfm.202211561
  • Zhou H, Zhang DZ, He N, et al. Topology optimization of multi-morphology composite lattice structure with anisotropy properties. Compos Struct. 2023;321:117294, doi:10.1016/j.compstruct.2023.117294
  • Li X, Zhao M, Yu X, et al. Multifunctional and customizable lattice structures for simultaneous sound insulation and structural applications. Mater Des. 2023;234:112354, doi:10.1016/j.matdes.2023.112354
  • Timercan A, Terriault P, Brailovski V. Axial tension/compression and torsional loading of diamond and gyroid lattice structures for biomedical implants: simulation and experiment. Mater Des. 2023;225:111585, doi:10.1016/j.matdes.2022.111585
  • Xue B, Peng YX, Ren SF, et al. Investigation of impact resistance performance of pyramid lattice sandwich structure based on SPH-FEM. Compos Struct. 2021;261:113561, doi:10.1016/j.compstruct.2021.113561
  • Wang X, Zhang L, Song B, et al. Tunable mechanical performance of additively manufactured plate lattice metamaterials with half-open-cell topology. Compos Struct. 2022;300:116172, doi:10.1016/j.compstruct.2022.116172
  • Liu X, Wang Y, Liu X, et al. Synergetic control mechanism for enhancing energy-absorption of 3D-printed lattice structures. Int J Mech Sci. 2023: 108711, doi:10.1016/j.ijmecsci.2023.108711
  • Li Q, Xiao M, Wang D, et al. Energy absorption characteristics of starfruit-inspired biomimetic lattice structure under non-axial compression loading. Eng Struct. 2023: 294, doi:10.1016/j.engstruct.2023.116767
  • Alkhatib SE, Karrech A, Sercombe TB. Isotropic energy absorption of topology optimized lattice structure. Thin-Walled Struct. 2023;182:110220, doi:10.1016/j.tws.2022.110220
  • Yang S, Chang H, Wang Y, et al. A phononic crystal suspension for vibration isolation of acoustic loads in underwater gliders. Appl Acoust. 2024;216:109731, doi:10.1016/j.apacoust.2023.109731
  • Cheng SL, Liang JM, Ding Q, et al. Analysis of the band gap characteristics of a new type of three-dimensional single phase phononic crystal. Wave Motion. 2023;122:103195, doi:10.1016/j.wavemoti.2023.103195
  • Pan Y, Liu R, Bin G, et al. Vibration and noise reduction of phononic crystal structure laid on the noise transmission path of axial piston pump. Appl Acoust. 2022;200:109075, doi:10.1016/j.apacoust.2022.109075
  • Sheng P, Fang X, Dai L, et al. Synthetical vibration reduction of the nonlinear acoustic metamaterial honeycomb sandwich plate. Mech Syst Signal Process. 2023;185:109774, doi:10.1016/j.ymssp.2022.109774
  • Liu Y, Yang J, Yi X, et al. Enhanced vibration suppression using diatomic acoustic metamaterial with negative stiffness mechanism. Eng Struct. 2022;271:114939, doi:10.1016/j.engstruct.2022.114939
  • Lee S, Ahn CH, Lee JW. Vibro-acoustic metamaterial for longitudinal vibration suppression in a low frequency range. Int J Mech Sci. 2018;144:223–234. doi:10.1016/j.ijmecsci.2018.05.010
  • Kudela P, Ijjeh A, Radzienski M, et al. Deep learning aided topology optimization of phononic crystals. Mech Syst Signal Process. 2023: 110636, doi:10.1016/j.ymssp.2023.110636
  • Ding W, Chen T, Yu D, et al. Isotacticity in chiral phononic crystals for low-frequency bandgap. Int J Mech Sci. 2023: 108678, doi:10.1016/j.ijmecsci.2023.108678
  • Tao Z, Ren X, Zhao AG, et al. A novel auxetic acoustic metamaterial plate with tunable bandgap. Int J Mech Sci. 2022;226:107414, doi:10.1016/j.ijmecsci.2022.107414
  • Zhang J, Yao D, Peng W, et al. Optimal design of lightweight acoustic metamaterials for low-frequency noise and vibration control of high-speed train composite floor. Appl Acoust. 2022;199:109041, doi:10.1016/j.apacoust.2022.109041
  • Zhang W, Yin H, Wu Y, et al. A novel auxetic 3D lattice structure for enhancing energy absorption. Compos Struct. 2023;326:117620, doi:10.1016/j.compstruct.2023.117620
  • Gao Y, Wei X, Han X, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism. Int J Solids Struct. 2021;233:111232, doi:10.1016/j.ijsolstr.2021.111232
  • Sahariah BJ, Namdeo A, Khanikar P. Composite-inspired multilattice metamaterial structure: an auxetic lattice design with improved strength and energy absorption. Mater Today Commun. 2022;30:103159, doi:10.1016/j.mtcomm.2022.103159
  • Peng XL, Bargmann S. Tunable auxeticity and isotropic negative thermal expansion in three-dimensional lattice structures of cubic symmetry. Extrem Mech Lett. 2021;43:101201, doi:10.1016/j.eml.2021.101201
  • Sahoo SS, Gupta MK, Mittal R, et al. Lattice dynamics and negative thermal expansion in layered mercury-based halides. Mater Today Commun. 2022;31:103323, doi:10.1016/j.mtcomm.2022.103323
  • Bai L, Xu W, Wang W, et al. Thermal expansion regulation and bandgap analysis of a novel dual-constituent negative Poisson’s ratio lattice metamaterial. Mater Today Commun. 2023;35:106311, doi:10.1016/j.mtcomm.2023.106311
  • White BC, Garland A, Alberdi R, et al. Interpenetrating lattices with enhanced mechanical functionality. Addit Manuf. 2021;38:101741, doi:10.1016/j.addma.2020.101741
  • Chen S, Liu X, Hu J, et al. Elastic architected mechanical metamaterials with negative stiffness effect for high energy dissipation and low frequency vibration suppression. Compos Part B Eng. 2023;267:111053, doi:10.1016/j.compositesb.2023.111053
  • Ha CS, Lakes RS, Plesha ME. Cubic negative stiffness lattice structure for energy absorption: numerical and experimental studies. Int J Solids Struct. 2019;178–179:127–135. doi:10.1016/j.ijsolstr.2019.06.024
  • Li Z, Zhai W, Li X, et al. Additively manufactured dual-functional metamaterials with customisable mechanical and sound-absorbing properties. Virtual Phys Prototyp. 2022;17:864–880. doi:10.1080/17452759.2022.2085119
  • Li X, Yu X, Zhao M, et al. Multi-level bioinspired microlattice with broadband sound-absorption capabilities and deformation-tolerant compressive response. Adv Funct Mater. 2023: 33, doi:10.1002/adfm.202210160
  • Li X, Yu X, Zhai W. Less Is more: hollow-truss microlattice metamaterials with dual sound dissipation mechanisms and enhanced broadband sound absorption. Small. 2022;18:1–12. doi:10.1002/smll.202204145
  • An X, Lai C, He W, et al. Three-dimensional chiral meta-plate lattice structures for broad band vibration suppression and sound absorption. Compos Part B Eng. 2021;224:109232, doi:10.1016/j.compositesb.2021.109232
  • Li H, Hu Y, Huang H, et al. Broadband low-frequency vibration attenuation in 3D printed composite meta- lattice sandwich structures. Compos Part B Eng. 2021;215:108772, doi:10.1016/j.compositesb.2021.108772
  • An X, Lai C, He W, et al. Three-dimensional meta-truss lattice composite structures with vibration isolation performance. Extrem Mech Lett. 2019;33:100577, doi:10.1016/j.eml.2019.100577
  • Zhang L, Bai Z, Zhang Q, et al. On vibration isolation performance and crashworthiness of a three-dimensional lattice metamaterial. Eng Struct. 2023;292:116510, doi:10.1016/j.engstruct.2023.116510
  • Yang W, Bai X, Zhu W, et al. 3D printing of polymeric multi-layer micro-perforated panels for tunable wideband sound absorption. Polymers (Basel). 2020;12(2):360, doi:10.3390/polym12020360
  • Yang W, An J, Chua CK, et al. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual Phys Prototyp. 2020;15:242–249. doi:10.1080/17452759.2020.1740747
  • Wu J, Zhang Y, Yang F, et al. A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances. Addit Manuf. 2023;76:103764, doi:10.1016/j.addma.2023.103764
  • Zhang XG, Jiang W, Zhang Y, et al. Bending performance of 3D re-entrant and hexagonal metamaterials. Thin-Walled Struct. 2023;188:110829, doi:10.1016/j.tws.2023.110829
  • Li H, Hu Y, Chen J, et al. Lightweight meta-lattice sandwich panels for remarkable vibration mitigation: analytical prediction, numerical analysis and experimental validations. Compos Part A. 2022;163:107218, doi:10.1016/j.compositesa.2022.107218
  • Sun P, Guo H, Jin F, et al. Mechanics and extreme low-frequency band gaps of auxetic hexachiral acoustic metamaterial with internal resonant unit. Appl Acoust. 2022;200:109046, doi:10.1016/j.apacoust.2022.109046