450
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure, corrosion resistance and wear properties of laser directed energy deposited CrCoNi medium-entropy alloy after cyclic deep cryogenic treatment

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: e2346285 | Received 24 Jan 2024, Accepted 14 Apr 2024, Published online: 16 May 2024

References

  • Thompson SM, Bian L, Shamsaei N, et al. An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36–62. doi:10.1016/j.addma.2015.07.001
  • Bi XL, Li RF, Yuan ZJ, et al. Laser-directed energy deposition of a high performance additively manufactured (CoCrNi)94(TiAl)6 medium-entropy alloy with a novel core-shell structured strengthening phase. Addit Manuf. 2024;80:103971. doi:10.1016/j.addma.2024.103971
  • Wang G, Zhao HD, Liang HY, et al. Multi-objective optimisation of process parameters for laser-based directed energy deposition of a mixture of H13 and M2 steel powders on 4Cr5Mo2SiV1 steel. Virtual Phys Prototyp. 2024;19(1):2290184. doi:10.1080/17452759.2023.2290184
  • Lu XF, Zhang GH, Chiumenti M, et al. Smart-substrate: a novel structural design to avert residual stress accretion in directed energy deposition additive manufacturing. Virtual Phys Prototyp. 2023;18(1):2246041. doi:10.1080/17452759.2023.2246041
  • Chen YF, Lu TW, Chen XY, et al. Optimized bilateral ultrasonic surface rolling process assisting directed energy deposition of thin-walled medium-entropy alloy with high mechanical performance. Addit. Manuf. 2023;78:103887. doi:10.1016/j.addma.2023.103887
  • Li ZT, Ma SH, Zhao SJ, et al. Achieving superb strength in single-phase FCC alloys via maximizing volume misfit. Mater Today. 2023;63:108–119. doi:10.1016/j.mattod.2023.02.012
  • Fu WJ, Sun YG, Fan GH, et al. Strain delocalization in a gradient-structured high entropy alloy under uniaxial tensile loading. Int J Plast. 2023;171:103808. doi:10.1016/j.ijplas.2023.103808
  • Fu WJ, Huang YJ, Sun JF, et al. Strengthening CrFeCoNiMn0.75Cu0.25 high entropy alloy via laser shock peening. Int J Plast. 2022;154:103296. doi:10.1016/j.ijplas.2022.103296
  • Cui X, Zhang S, Wang C, et al. Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel. Mater Sci Eng A. 2020;791:139738. doi:10.1016/j.msea.2020.139738
  • Gao Q, Jiang XS, Sun HL, et al. Effect mechanism of cryogenic treatment on ferroalloy and nonferrous alloy and their weldments: a review. Mater Today Commun. 2022;33:104830. doi:10.1016/j.mtcomm.2022.104830
  • Kumar TV, Thirumurugan R, Viswanath B. Influence of cryogenic treatment on the metallurgy of ferrous alloys: a review. Mater Manuf Processes. 2017;32(16):1789–1805. doi:10.1080/10426914.2017.1317790
  • Yao E, Zhang HJ, Ma K, et al. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: a review. J Mater Res Technol. 2023;26:3661–3675. doi:10.1016/j.jmrt.2023.08.140
  • Li K, Chen W, Yin BZ, et al. A comparative study on WE43 magnesium alloy fabricated by laser powder bed fusion coupled with deep cryogenic treatment: evolution in microstructure and mechanical properties. Addit Manuf. 2023;77:103814. doi:10.1016/j.addma.2023.103814
  • Zhao RX, Chen CY, Shuai SS, et al. Enhanced mechanical properties of Ti6Al4 V alloy fabricated by laser additive manufacturing under static magnetic field. Mater Res Lett. 2022;10(8):530–538. doi:10.1080/21663831.2022.2064195
  • Wang R, Wang J, Cao TW, et al. Microstructure characteristics of a René N5 Ni-based single-crystal superalloy prepared by laser-directed energy deposition. Addit Manuf. 2023;61:103363. doi:10.1016/j.addma.2022.103363
  • Li HG, Che PC, Yang XK, et al. Enhanced tensile properties and wear resistance of additively manufactured CoCrFeMnNi high-entropy alloy at cryogenic temperature. Rare Met 2022;41(4):1210–1216. doi:10.1007/s12598-021-01867-1
  • Zhou CA, Sun QD, Qian DQ, et al. Effect of deep cryogenic treatment on mechanical properties and residual stress of AlSi10Mg alloy fabricated by laser powder bed fusion. J Mater Process Technol 2022;303:117543. doi:10.1016/j.jmatprotec.2022.117543
  • Li HG, Huang YJ, Zhao WJ, et al. Overcoming the strength-ductility trade-off in an additively manufactured CoCrFeMnNi high entropy alloy via deep cryogenic treatment. Addit. Manuf. 2022;50:102546. doi:10.1016/j.addma.2021.102546
  • Gludovatz B, Hohenwarter A, Thurston KVS, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun. 2016;7(1):10602. doi:10.1038/ncomms10602
  • Zhao WJ, Sun YG, Che PC, et al. The columnar to equiaxed transition of CoCrNi medium-entropy alloy fabricated by laser directed energy deposition. Mater Des. 2024;237:112538. doi:10.1016/j.matdes.2023.112538
  • Peng ZL, Zhang XY, Zhang Y, et al. Wear resistance enhancement of inconel 718 via high-speed ultrasonic vibration cutting and associated surface integrity evaluation under high-pressure coolant supply. Wear. 2023;530-531:205027. doi:10.1016/j.wear.2023.205027
  • Wu T, Ren YJ, Liang LX, et al. Tensile strength and wear resistance of glass-reinforced PA1212 fabricated by selective laser sintering. Virtual Phys Prototyp. 2023;18(1):2150652. doi:10.1080/17452759.2022.2150652
  • Zou X, Chang TF, Yan Z, et al. Control of thermal strain and residual stress in pulsed-wave direct laser deposition. Opt Laser Technol. 2023;163:109386. doi:10.1016/j.optlastec.2023.109386
  • Tong ZP, Ren XD, Jiao JF, et al. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property. J Alloys Compd. 2019;785:1144–1159. doi:10.1016/j.jallcom.2019.01.213
  • Bai PK, Wang J, Zhao ZY, et al. Microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy fabricated by cold metal transfer wire arc additive manufacturing. J Mater Res Technol. 2023;27:5805–5821. doi:10.1016/j.jmrt.2023.10.265
  • Liu M, Zheng Q, Wang X, et al. Characterization of distribution of residual stress in shot-peened layer of nickel-based single crystal superalloy DD6 by nanoindentation technique. Mech Mater. 2022;164:104143. doi:10.1016/j.mechmat.2021.104143
  • Sahami-Nejad M, Lashgari HR, Zangeneh S, et al. Determination of residual stress on TIG-treated surface via nanoindentation technique in Co-Cr-Mo-C alloy. Surf Coat Technol. 2019;380:125020. doi:10.1016/j.surfcoat.2019.125020
  • Suresh S, Giannakopoulos AE. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998;46(16):5755–5767. doi:10.1016/S1359-6454(98)00226-2
  • Zhou KX, Cui DC, Chai ZS, et al. In-situ tailoring microstructures to promote strength-ductility synergy in laser powder bed fusion of NiCoCr medium-entropy alloy. Addit Manuf. 2023;66:103443. doi:10.1016/j.addma.2023.103443
  • Weng F, Chew YX, Ong WK, et al. Enhanced corrosion resistance of laser aided additive manufactured CoCrNi medium entropy alloys with oxide inclusion. Corros Sci. 2022;195:109965. doi:10.1016/j.corsci.2021.109965
  • Zhang ZJ, Yuan TC, Li RD. Corrosion performance of selective laser-melted equimolar CrCoNi medium-entropy alloy vs its cast counterpart in 3.5 wt%. NaCl. J Alloys Compd. 2021;864:158105. doi:10.1016/j.jallcom.2020.158105
  • Feng K, Zhang Y, Li ZG, et al. Corrosion properties of laser cladded CrCoNi medium entropy alloy coating. Surf Coat Technol. 2020;397:126004. doi:10.1016/j.surfcoat.2020.126004
  • Feng H, Li HB, Wu XL, et al. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. J Mater Sci Technol. 2018;34(10):1781–1790. doi:10.1016/j.jmst.2018.03.021
  • Wetzel A, von der Au M, Dietrich PM, et al. The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy. Appl Surf Sci. 2022;601:154171. doi:10.1016/j.apsusc.2022.154171
  • Moravcik I, Peighambardoust NS, Motallebzadeh A, et al. Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution. Mater Charact. 2021;172:110869. doi:10.1016/j.matchar.2020.110869
  • Wang D, Huang JH, Tan CL, et al. Mechanical and corrosion properties of additively manufactured SiC-reinforced stainless steel. Mater Sci Eng A. 2022;841:143018. doi:10.1016/j.msea.2022.143018
  • Lu Z, Zhang CC, Fang RR, et al. Microstructure evolution and corrosion behavior of the novel maraging stainless steel manufactured by selective laser melting. Mater Charact. 2022;190:112078. doi:10.1016/j.matchar.2022.112078
  • Xia C, Chen K, Chen BH, et al. Microstructure evolution, mechanical properties, and corrosion behavior of novel (50Zr–50Ti)-xNi ternary alloys. Mater Sci Eng A. 2022;846:143308. doi:10.1016/j.msea.2022.143308
  • Luo H, Li ZM, Mingers AM, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros Sci. 2018;134:131–139. doi:10.1016/j.corsci.2018.02.031
  • Wu PF, Gan KF, Yan DS, et al. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros Sci. 2021;183:109341. doi:10.1016/j.corsci.2021.109341
  • Shuang S, Ding ZY, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy. Corros Sci. 2020;164:108315. doi:10.1016/j.corsci.2019.108315
  • Jiang B, Wang C, Song RG, et al. Effect of creep ageing on the corrosion behaviour of an Al–Cu–Li alloy. Corros Sci. 2022;202:110314. doi:10.1016/j.corsci.2022.110314
  • Ma JW, Zhang BC, Fu Y, et al. Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells. Corros Sci. 2022;201:110257. doi:10.1016/j.corsci.2022.110257
  • Qi X, He YF, Jiang B, et al. Effect of deformation and annealing on microstructure and corrosion behavior of 7075 aluminum alloy with micro arc oxidation coating. Surf Coat Technol. 2023;469:129791. doi:10.1016/j.surfcoat.2023.129791
  • Sun M, Xiao K, Dong CF, et al. Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution. Corros Sci. 2014;89:137–145. doi:10.1016/j.corsci.2014.08.023
  • Gerashi E, Alizadeh R, Langdon TG. Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: a review. J Magnes Alloy. 2022;10(2):313–325. doi:10.1016/j.jma.2021.09.009
  • Xu JP, Liu CZ, Wu JP, et al. New insight into the role of microscale residual stresses on initial corrosion behavior of Ti35 alloy. Corros Sci. 2022;206:110491. doi:10.1016/j.corsci.2022.110491
  • Diao GJ, He AQ, Tang YQ, et al. Effects of Al and Ti on microstructure, mechanical properties and wear resistance of TiXCrFe2Ni2 alloys. Mater Sci Eng A. 2023;879:145242. doi:10.1016/j.msea.2023.145242
  • Cao F, Cui HZ, Song XJ, et al. Fabrication of multi-scale TiC and stainless steel composite coatings via circular oscillating laser towards superior wear and corrosion resistance of aluminum alloy. J Mater Sci Technol. 2024;177:191–204. doi:10.1016/j.jmst.2023.07.072
  • Li HG, Zhao WJ, Chen T, et al. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling. J Mater Sci Technol 2022;115:40–51. doi:10.1016/j.jmst.2021.11.022
  • Jovičević-Klug M, Rezar R, Jovičević-Klug P, et al. Influence of deep cryogenic treatment on natural and artificial aging of Al-Mg-Si alloy EN AW 6026. J Alloys Compd 2021;899:163323. doi:10.1016/j.jallcom.2021.163323
  • Liu K, Chen XZ, Shen QK, et al. Microstructural evolution and mechanical properties of deep cryogenic treated Cu–Al–Si alloy fabricated by cold metal transfer (CMT) process. Mater Charact 2019;159:110011. doi:10.1016/j.matchar.2019.110011