470
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a novel powder sheets printing process towards the next generation of additive manufacturing: the role of laser defocusing

ORCID Icon, , , , , , , , , , , , , , & show all
Article: e2361856 | Received 16 Mar 2024, Accepted 23 May 2024, Published online: 07 Jun 2024

References

  • Zhang W, Guo D, Wang L, et al. X-ray diffraction measurements and computational prediction of residual stress mitigation scanning strategies in powder bed fusion additive manufacturing. Addit Manuf. 2023;61:103275. doi:10.1016/j.addma.2022.103275
  • Zhang W, Tong M, Harrison NM. Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit Manuf. 2020;36:101507. doi:10.1016/j.addma.2020.101507
  • Su J, Jiang F, Teng J, et al. Recent innovations in laser additive manufacturing of titanium alloys. Int J Extreme Manuf. 2024;6(3):032001. doi:10.1088/2631-7990/ad2545
  • Bodner SC, Hlushko K, van de Vorst LTG, et al. Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloys. J Mater Res Technol. 2022;21:4846–4859. doi:10.1016/j.jmrt.2022.11.064
  • Wei C, Zhang Z, Cheng D, et al. An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales. Int J Extreme Manuf. 2021;3(1):012003. doi:10.1088/2631-7990/abce04
  • Guo C, Wei S, Wu Z, et al. Effect of dual phase structure induced by chemical segregation on hot tearing reduction in additive manufacturing. Mater Des. 2023;228:111847. doi:10.1016/j.matdes.2023.111847
  • Wen Y, Zhang B, Narayan RL, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718. Addit Manuf. 2021;40:101926. doi:10.1016/j.addma.2021.101926
  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. doi:10.1016/j.matdes.2021.110008
  • Hung CH, Sutton A, Li Y, et al. Enhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing. J Manuf Process. 2019;45:438–446. doi:10.1016/j.jmapro.2019.07.030
  • Rittinghaus S-K, Throm F, Wilms MB, et al. Laser fusion of powder and foil – a multi material approach to additive manufacturing. Lasers Manuf Mater Process. 2022;9(4):569–589. doi:10.1007/s40516-022-00190-6
  • Bodner SC, van de Vorst LTG, Zalesak J, et al. Inconel-steel multilayers by liquid dispersed metal powder bed fusion: microstructure, residual stress and property gradients. Addit Manuf. 2020;32:101027. doi:10.1016/j.addma.2019.101027
  • Guan J, Wang Q. Laser powder bed fusion of dissimilar metal materials: a review. Materials (Basel). 2023;16(7):2579. doi:10.3390/ma16072757
  • Zhang W, Lu X, Coban A, et al. Powder sheet additive manufacturing of multi-material structures: experimental and computational characterizations. Compos Part B: Eng. 2024;272:111203. doi:10.1016/j.compositesb.2024.111203
  • Zhang W, Sasnauskas A, Coban A, et al. Powder sheets additive manufacturing: principles and capabilities for multi-material printing. Addit Manuf Lett. 2024;8:100187. doi:10.1016/j.addlet.2023.100187
  • Zhang W, Pullini D, Alberghini M, et al. Material incorporation in powder sheet additive manufacturing toward lightweight designs for future mobility. J Laser Appl. 2024;36(2). doi:10.2351/7.0001348
  • Bidare P, Bitharas I, Ward RM, et al. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018;142:107–120. doi:10.1016/j.actamat.2017.09.051
  • Bitharas I, Parab N, Zhao C, et al. The interplay between vapour, liquid, and solid phases in laser powder bed fusion. Nat Commun. 2022;13(1):2959. doi:10.1038/s41467-022-30667-z
  • Taheri Andani M, Dehghani R, Karamooz-Ravari MR, et al. A study on the effect of energy input on spatter particles creation during selective laser melting process. Addit Manuf. 2018;20:33–43. doi:10.1016/j.addma.2017.12.009
  • King WE, Anderson AT, Ferencz RM, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev. 2015;2(4):041304. doi:10.1063/1.4937809
  • Wang Q, Zhang W, Li S, et al. Material characterisation and computational thermal modelling of electron beam powder bed fusion additive manufacturing of Ti2448 Titanium alloy. Materials. 2021;14(23):7359. doi:10.3390/ma14237359
  • Chen Q, Zhao Y, Strayer S, et al. Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit Manuf. 2020;37:101642. doi:10.1016/j.addma.2020.101642
  • Zhang W, Abbott WM, Sasnauskas A, et al. Process parameters optimisation for mitigating residual stress in dual-laser beam powder Bed fusion additive manufacturing. Metals. 2022;12(3):420. doi:10.3390/met12030420
  • Zhang W, Tong M, Harrison NM. Multipart build effects on temperature and residual stress by laser beam powder bed fusion additive manufacturing, 3D. Printing Addit Manuf. 2023;10(4):749–761. doi:10.1089/3dp.2021.0143
  • Guo L, Wang H, Liu H, et al. Understanding keyhole induced-porosities in laser powder bed fusion of aluminum and elimination strategy. Int J Mach Tools Manuf. 2023;184:103977. doi:10.1016/j.ijmachtools.2022.103977
  • Yeung H, Kim FH, Donmez MA, et al. Keyhole pores reduction in laser powder bed fusion additive manufacturing of nickel alloy 625. Int J Mach Tools Manuf. 2022;183:103957. doi:10.1016/j.ijmachtools.2022.103957
  • Gu D, Guo M, Zhang H, et al. Effects of laser scanning strategies on selective laser melting of pure tungsten. Int J Extreme Manuf. 2020;2(2):025001. doi:10.1088/2631-7990/ab7b00
  • Wu AS, Brown DW, Kumar M, et al. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A. 2014;45(13):6260–6270. doi:10.1007/s11661-014-2549-x
  • Xiaojia N, Chen Z, Qi Y, et al. Effect of defocusing distance on laser powder bed fusion of high strength Al–Cu–Mg–Mn alloy. Virtual Phys Prototyp. 2020;15:1–15. doi:10.1080/17452759.2019.1644184
  • Kunimine T, Miyazaki R, Yamashita Y, et al. Effects of laser-beam defocus on microstructural features of compositionally graded WC/Co-alloy composites additively manufactured by multi-beam laser directed energy deposition. Sci Rep. 2020;10(1):8975. doi:10.1038/s41598-020-65429-8
  • Metelkova J, Kinds Y, Kempen K, et al. On the influence of laser defocusing in selective laser melting of 316L. Addit Manuf. 2018;23:161–169. doi:10.1016/j.addma.2018.08.006
  • Rahman Rashid RA, Ali H, Palanisamy S, et al. Effect of process parameters on the surface characteristics of AlSi12 samples made via selective laser melting. Mater Today: Proc. 2017;4(8):8724–8730.
  • Rocco Lupoi RP. A product and method for powder feeding in powder bed 3d printers. Int Appl. 2020. https://patents.google.com/patent/US20220126372A1/en
  • Shen Y, Li Y, Chen C, et al. 3D printing of large, complex metallic glass structures. Mater Des. 2017;117:213–222. doi:10.1016/j.matdes.2016.12.087
  • Aboulkhair NT, Bosio F, Gilani N, et al. Chapter six - Additive manufacturing processes for metals. In: J Kadkhodapour, S Schmauder, F Sajadi, editors. Quality analysis of additively manufactured metals. Elsevier; 2023. p. 201–258.
  • Volpp J, Zhang W, Abbott W, et al. Binder Evaporation during Powder Sheet Additive Manufacturing, Solid Freeform Fabrication Symposium, Austin Texas, 2023, pp. 324–328.
  • Lupoi R, Abbott WM, Senthamaraikannan R, et al. Metal additive manufacturing via a novel composite material using powder and polymers formed in sheets. CIRP Ann. 2022;71:181–184. doi:10.1016/j.cirp.2022.03.012
  • Jia H, Hua S, Wang H, et al. Scanning strategy in selective laser melting (SLM): a review. The Int J Adv Manuf Technol. 2021;113:2413–2435. doi:10.1007/s00170-021-06810-3
  • Zhang Z, Huang Y, Rani Kasinathan A, et al. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol. 2019;109:297–312. doi:10.1016/j.optlastec.2018.08.012
  • Gaikwad A, Williams R, Winton H, et al. Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder Bed fusion additive manufacturing. Mater Des. 2022;221:110919. doi:10.1016/j.matdes.2022.110919
  • Bean GE, Witkin DB, McLouth TD, et al. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit Manuf. 2018;22:207–215. doi:10.1016/j.addma.2018.04.024
  • Ronneberg T, Davies CM, Hooper PA. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Mater Des. 2020;189:108481. doi:10.1016/j.matdes.2020.108481
  • Riedel R, Chen I-W. Ceramics Science and Technology; 2011.
  • Liu B, Fang G, Lei L, et al. Experimental and numerical exploration of defocusing in Laser Powder Bed Fusion (LPBF) as an effective processing parameter. Opt Laser Technol. 2022;149:107846. doi:10.1016/j.optlastec.2022.107846
  • Zhao P, Zhang Y, Liu W, et al. Influence mechanism of laser defocusing amount on surface texture in direct metal deposition. J Mater Process Technol. 2023;312:117822. doi:10.1016/j.jmatprotec.2022.117822
  • Wang D, Dou W, Ou Y, et al. Characteristics of droplet spatter behavior and process-correlated mapping model in laser powder Bed fusion. J Mater Res Technol. 2021;12:1051–1064. doi:10.1016/j.jmrt.2021.02.043
  • Ogoke F, Farimani AB. Thermal control of laser powder bed fusion using deep reinforcement learning. Addit Manuf. 2021;46:102033. doi:10.1016/j.addma.2021.102033
  • Zheng H, Li H, Lang L, et al. Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing. J Manuf Process. 2018;36:60–67. doi:10.1016/j.jmapro.2018.09.011
  • Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting. A review. Chin J Mech Eng. 2017;30(3):515–527. doi:10.1007/s10033-017-0121-5
  • D’Accardi E, Krankenhagen R, Ulbricht A, et al. Capability to detect and localize typical defects of laser powder bed fusion (L-PBF) process: an experimental investigation with different non-destructive techniques. Prog Addit Manuf. 2022;7:1239-1256. doi:10.1007/s40964-022-00297-4
  • Metelkova J, de Formanoir C, Haitjema H, et al. Elevated edges of metal parts produced by laser powder bed fusion: characterization and post-process correction. Joint Special Interest Group Meeting between euspen and ASPE Advancing Precision in Additive Manufacturing Ecole Centrale de Nantes, France, September 2019. https://www.euspen.eu/knowledge-base/AM19105.pdf
  • Paraschiv A, Matache G, Constantin N, et al. Investigation of scanning strategies and laser remelting effects on top surface deformation of additively manufactured IN 625. Materials. 2022;15:3198. doi:10.3390/ma15093198
  • Matache G, Vladut M, Paraschiv A, et al. Edge and corner effects in selective laser melting of IN 625 alloy. Manuf Rev. 2020;7:8. doi:10.1051/mfreview/2020008
  • Liu SY, Li HQ, Qin CX, et al. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater Des. 2020;191:108642. doi:10.1016/j.matdes.2020.108642
  • King WE, Barth HD, Castillo VM, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915–2925. doi:10.1016/j.jmatprotec.2014.06.005
  • Yu H, Yang J, Yin J, et al. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel. Mater Sci Eng A. 2017;695:92–100. doi:10.1016/j.msea.2017.04.031
  • Leicht A, Fischer M, Klement U, et al. Increasing the productivity of laser powder Bed fusion for stainless steel 316L through increased layer thickness. J Mater Eng Perform. 2021;30(1):575–584. doi:10.1007/s11665-020-05334-3
  • Pham M-S, Dovgyy B, Hooper PA, et al. The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun. 2020;11(1):749. doi:10.1038/s41467-020-14453-3