246
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accelerating lPBF process optimisation for NiTi shape memory alloys with enhanced and controllable properties through machine learning and multi-objective methods

, , , &
Article: e2364221 | Received 16 Apr 2024, Accepted 30 May 2024, Published online: 19 Jun 2024

References

  • Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components-process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi:10.1016/j.pmatsci.2017.10.001
  • Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater. 2019;10(3):205–224. doi:10.1080/19475411.2019.1591541
  • Guo W, Feng B, Yang Y, et al. Effect of laser scanning speed on the microstructure, phase transformation and mechanical property of NiTi alloys fabricated by LPBF. Mater Des. 2022;215:110460. doi:10.1016/j.matdes.2022.110460
  • Xue L, Atli KC, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework. Acta Mater. 2021;215:117017. doi:10.1016/j.actamat.2021.117017
  • Lu HZ, Ma HW, Cai WS, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021;219:117261. doi:10.1016/j.actamat.2021.117261
  • Zhang Q, Hao S, Liu Y, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl Mater Today. 2020;19:100547. doi:10.1016/j.apmt.2019.100547
  • Sharma N, Jangra KK, Raj T. Fabrication of NiTi alloy: a review. Proc Inst Mech Eng, Part L: J Mater: Des Appl. 2015;232(3):250–269. doi:10.1177/1464420715622494
  • DebRoy T, Mukherjee T, Milewski JO, et al. Scientific, technological and economic issues in metal printing and their solutions. Nat Mater. 2019;18(10):1026–1032. doi:10.1038/s41563-019-0408-2
  • Wang X, Yu J, Liu J, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Add Manuf. 2020;36:101545. doi:10.1016/j.addma.2020.101545
  • Alagha AN, Hussain S, Zaki W. Additive manufacturing of shape memory alloys: A review with emphasis on powder bed systems. Mater Des. 2021;204:109654. doi:10.1016/j.matdes.2021.109654
  • Feng B, Wang C, Zhang Q, et al. Effect of laser hatch spacing on the pore defects, phase transformation and properties of selective laser melting fabricated NiTi shape memory alloys. Mater Sci Eng A. 2022;840:142965. doi:10.1016/j.msea.2022.142965
  • Shen FL, Li HQ, Guo H, et al. Effect of energy density on the superelastic property of Ni-rich NiTi alloy fabricated by laser powder bed fusion. Mater Sci Eng A. 2022;854:143874. doi:10.1016/j.msea.2022.143874
  • Lu L-X, Jiang H, Bian Q, et al. Integrated modelling and simulation of NiTi alloy by powder bed fusion: single track study. Mater Des. 2023;227:111755. doi:10.1016/j.matdes.2023.111755
  • Wen Y, Wu X, Huang A, et al. Laser powder bed fusion of immiscible steel and bronze: A compositional gradient approach for optimum constituent combination. Acta Mater. 2024;264:119572. doi:10.1016/j.actamat.2023.119572
  • Gao J, Li Z, Liu J, et al. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: a review. Acta Metall Sinica. 2023;59(1):87–105. doi:10.11900/0412.1961.2022.00430
  • Sing SL, Kuo CN, Shih CT, et al. Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. Virtual Phys Prototyp. 2021;16(3):372–386. doi:10.1080/17452759.2021.1944229
  • Gu D, Ma C, Dai D, et al. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys Prototyp. 2021;16(sup1):19–38. doi:10.1080/17452759.2021.1892389
  • Lu HZ, Yang C, Luo X, et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing. Mater Sci Eng A. 2019;763:138166. doi:10.1016/j.msea.2019.138166
  • Xiong Z, Li Z, Sun Z, et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J Mater Sci Technol. 2019;35(10):2238–2242. doi:10.1016/j.jmst.2019.05.015
  • Zhang J, Yin C, Xu Y, et al. Machine learning applications for quality improvement in laser powder bed fusion: a state-of-the-art review. Int J AI Mater Des. 2024;1(1). doi:10.36922/ijamd.2301
  • Goh GD, Huang X, Huang S, et al. Data imputation strategies for process optimization of laser powder bed fusion of Ti6Al4V using machine learning. Mater Sci Addit Manuf. 2023;2(1). doi:10.36922/msam.50
  • Zhang T, Zhong J, Zhang L. Pareto optimal driven automation framework for quantitative microstructure simulation towards spinodal decomposition. MRS Commun. 2023;13(5):877–884. doi:10.1557/s43579-023-00429-z
  • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–260. doi:10.1126/science.aaa8415
  • Hu Z, Mahadevan S. Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities. Int J Adv Manuf Technol. 2017;93(5):2855–2874. doi:10.1007/s00170-017-0703-5
  • Gan J, Duan L, Li F, et al. Effect of laser energy density on the evolution of Ni4Ti3 precipitate and property of NiTi shape memory alloys prepared by selective laser melting. J Alloys Compd. 2021;869:159338. doi:10.1016/j.jallcom.2021.159338
  • Guo W, Sun Z, Yang Y, et al. Study on the junction zone of NiTi shape memory alloy produced by selective laser melting via a stripe scanning strategy. Intermetallics. 2020;126:106947. doi:10.1016/j.intermet.2020.106947
  • Lu HZ, Liu LH, Yang C, et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J Mater Sci Technol. 2022;101:205–216. doi:10.1016/j.jmst.2021.06.019
  • Lu HZ, Ma HW, Cai WS, et al. Altered phase transformation behaviors and enhanced bending shape memory property of NiTi shape memory alloy via selective laser melting. J Mater Process Technol. 2022;303:117546. doi:10.1016/j.jmatprotec.2022.117546
  • Mahmoudi M, Tapia G, Franco B, et al. On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manuf Process. 2018;35:672–680. doi:10.1016/j.jmapro.2018.08.037
  • Ren Q, Chen C, Lu Z, et al. Effect of a constant laser energy density on the evolution of microstructure and mechanical properties of NiTi shape memory alloy fabricated by laser powder bed fusion. Opt Laser Technol. 2022;152:108182. doi:10.1016/j.optlastec.2022.108182
  • Saedi S, Shayesteh Moghaddam N, Amerinatanzi A, et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater. 2018;144:552–560. doi:10.1016/j.actamat.2017.10.072
  • Shayesteh Moghaddam N, Saghaian SE, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A. 2018;724:220–230. doi:10.1016/j.msea.2018.03.072
  • Shi G, Li L, Yu Z, et al. The interaction effect of process parameters on the phase transformation behavior and tensile properties in additive manufacturing of Ni-rich NiTi alloy. J Manuf Process. 2022;77:539–550. doi:10.1016/j.jmapro.2022.03.027
  • Yang Y, Zhan JB, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy. Materialia. 2019;6:100305. doi:10.1016/j.mtla.2019.100305
  • Yang Y, Zhan JB, Sun ZZ, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy. J Alloys Compd. 2019;804:220–229. doi:10.1016/j.jallcom.2019.06.340
  • Yu C, Hu Y, lu W, et al. Effect of hatch spacing on phase transformation behavior and mechanical properties of NiTi shape memory alloy fabricated by selective laser melting. Laser Optoelectron Prog. 2021;58(19):1–10. doi:10.3788/LOP202158.1914008
  • Yu Z, Xu Z, Guo Y, et al. Study on properties of SLM-NiTi shape memory alloy under the same energy density. J Mater Res Technol. 2021;13:241–250. doi:10.1016/j.jmrt.2021.04.058
  • Gong X, Groeneveld-Meijer W, Manogharan G. Additive manufacturing: application and validation of machine learning-based process-structure-property linkages in Ti-6Al-4V. Mater Sci Addit Manuf. 2023;2(3). doi:10.36922/msam.0999
  • Koh HK, Moo JGS, Leong Sing S, et al. Use of fumed silica nanostructured additives in selective laser melting and fabrication of steel matrix nanocomposites. Materials. 2022;15(5):1869. doi:10.3390/ma15051869.
  • Sow MC, De Terris T, Castelnau O, et al. Influence of beam diameter on Laser Powder Bed Fusion (L-PBF) process. Addit Manuf. 2020;36:101532. doi:10.1016/j.addma.2020.101532
  • Agrawal AK, Rankouhi B, Thoma DJ. Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions. Curr Opin Solid State Mater Sci. 2022;26(6):101024. doi:10.1016/j.cossms.2022.101024
  • Dai R, Yang S, Zhang T, et al. High-throughput screening of optimal process parameters for PVD TiN coatings with best properties through a combination of 3-d quantitative phase-field simulation and hierarchical multi-objective optimization strategy. Front Mater. 2022;9:924294. doi:10.3389/fmats.2022.924294
  • Liu P, Huang H, Wen C, et al. The γ/γ′ microstructure in CoNiAlCr-based superalloys using triple-objective optimization. NPJ Computat Mater. 2023;9(1):140. doi:10.1038/s41524-023-01090-9
  • Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001
  • Xue L, Atli KC, Zhang C, et al. Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater. 2022;229:117781. doi:10.1016/j.actamat.2022.117781