353
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Topological optimisation and laser additive manufacturing of force-direction-sensitive NiTi porous structures with large deformation recovery behaviour

, , , , , , & show all
Article: e2365860 | Received 16 Apr 2024, Accepted 04 Jun 2024, Published online: 19 Jun 2024

References

  • Yu GJ, Xiao LJ, Song WD. Deep learning-based heterogeneous strategy for customizing responses of lattice structures. Int J Mech Sci. 2022;229:107531. doi:10.1016/j.ijmecsci.2022.107531
  • Yin HF, Zhang WZ, Zhu LC, et al. Review on lattice structures for energy absorption properties. Compos Struct. 2023;304:116397. doi:10.1016/j.compstruct.2022.116397
  • Okubo S, Yamauchi Y, Kitazono K. Effects of random and controlled irregularity in strut lattice structure of PA12 on compression anisotropy. Addit Manuf. 2023;63:103385.
  • Zhu JN, Ding ZY, Borisov E, et al. Healing cracks in additively manufactured NiTi shape memory alloys. Virtual Phys Prototyp. 2023;18:e2246437. doi:10.1080/17452759.2023.2246437
  • Elahinia M, Moghaddam NS, Andani M, et al. Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci. 2016;83:630–663. doi:10.1016/j.pmatsci.2016.08.001
  • Lu HZ, Chen T; Liu LH, et al. Constructing function domains in NiTi shape memory alloys by additive manufacturing. Virtual Phys Prototyp. 2022;17: 563-581.
  • Yang Q, Sun KH, Yang C, et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting. J Alloy Compd. 2021;858:157674. doi:10.1016/j.jallcom.2020.157674
  • Dallago M, Raghavendra S, Luchin V, et al. The role of node fillet, unit-cell size and strut orientation on the fatigue strength of Ti-6Al-4V lattice materials additively manufactured via laser powder bed fusion. Int J Fatigue. 2021;142:105946. doi:10.1016/j.ijfatigue.2020.105946
  • Zhao M, Zhang DZ, Li ZH, et al. Design, mechanical properties, and optimization of BCC lattice structures with taper struts. Compos Struct. 2022;295:115830. doi:10.1016/j.compstruct.2022.115830
  • Zhang C, Zheng H, Yang L, et al. Mechanical responses of sheet-based gyroid-type triply periodic minimal surface lattice structures fabricated using selective laser melting. Mater Des. 2022;214:110407. doi:10.1016/j.matdes.2022.110407
  • Zhao M, Li X, Zhang D, et al. TPMS-based interpenetrating lattice structures: design, mechanical properties and multiscale optimization. Int J Mech Sci. 2023;244:108092. doi:10.1016/j.ijmecsci.2022.108092
  • Lu H, SN C. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems. Adv Mater. 2018;30:1705708. doi:10.1002/adma.201705708
  • du Plessis A, Razavi SMJ, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: a review. Prog Mater Sci. 2022;125:100918. doi:10.1016/j.pmatsci.2021.100918
  • Meng L, Zhao J, Lan XQ, et al. Multi-objective optimisation of bio-inspired lightweight sandwich structures based on selective laser melting. Virtual Phys Prototyp. 2019;15:106–119. doi:10.1080/17452759.2019.1692673
  • Liu Y, Chen BP, Wang CY, et al. Design of porous metal block augmentation to treat tibial bone defects in total knee arthroplasty based on topology optimization. Front Bioeng Biotechnol. 2021;9:765438. doi:10.3389/fbioe.2021.765438
  • Dilgen CB, Dilgen SB, Aage N, et al. Topology optimization of acoustic mechanical interaction problems: a comparative review. Struct Multidiscip Optim. 2019;60:779–801. doi:10.1007/s00158-019-02236-4
  • Li QH, Sigmund O, Jensen JS, et al. Reduced-order methods for dynamic problems in topology optimization: a comparative study. Comput Meth Appl Mech Eng. 2021;387:114149. doi:10.1016/j.cma.2021.114149
  • Liu BS, Huang XD, Huang CF, et al. Topological design of structures under dynamic periodic loads. Eng Struct. 2017;142:128–136. doi:10.1016/j.engstruct.2017.03.067
  • Zhang L, Song B, Fu JJ, et al. Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting: design, manufacturing and characterization. J Manuf Process. 2020;56:1166–1177. doi:10.1016/j.jmapro.2020.06.005
  • Song J, Wang Y, Zhou WZ, et al. Topology optimization-guided lattice composites and their mechanical characterizations. Compos Part B-Eng. 2019;160:402–411. doi:10.1016/j.compositesb.2018.12.027
  • Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice. Prog Mater Sci. 2020;107:100590. doi:10.1016/j.pmatsci.2019.100590
  • Chen LY, Liang SX, Liu YJ, et al. Additive manufacturing of metallic lattice structures: unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R-Rep. 2021;146:100648. doi:10.1016/j.mser.2021.100648
  • Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive manufacturing in aerospace: a review. Mater Des. 2021;209:110008. doi:10.1016/j.matdes.2021.110008
  • Lu HZ, Ma HW, Luo X, et al. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. J Mater Res Technol. 2021;15:6797–6812. doi:10.1016/j.jmrt.2021.11.112
  • Zhang XL, Jiang Y, Wang SP, et al. Compression behavior and failure mechanisms of bionic porous NiTi structures built via selective laser melting. Acta Metall Sin. 2023;36:926–936. doi:10.1007/s40195-023-01523-w
  • Shi KY, Gu DD, Liu H, et al. Process-structure multi-objective inverse optimisation for additive manufacturing of lattice structures using a physics-enhanced data-driven method. Virtual Phys Prototyp. 2023;18:e2266641. doi:10.1080/17452759.2023.2266641
  • Feng JW, Liu B, Lin ZW, et al. Isotropic porous structure design methods based on triply periodic minimal surfaces. Mater Des. 2021;210:110050. doi:10.1016/j.matdes.2021.110050
  • Chen W, Gu DD, Yang JK, et al. Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion. Int J Extreme Manuf. 2022;4: 045002. doi:10.1088/2631-7990/ac8ef3
  • Zhang L, Ma QP, Ding JH, et al. Design of elastically isotropic shell lattices from anisotropic constitutive materials for additive manufacturing. Addit Manuf. 2022;59:103185.
  • Ma QP, Zhang L, Ding JH, et al. Elastically-isotropic open-cell minimal surface shell lattices with superior stiffness via variable thickness design. Addit Manuf. 2021;47:102293.
  • Fu JJ, Sun PF, Du YX, et al. Isotropic design and mechanical characterization of TPMS-based hollow cellular structures. Compos Struct. 2022;279:114818. doi:10.1016/j.compstruct.2021.114818
  • Liu X, Gu DD, Yuan LH, et al. Effect of laser printing mode on surface topography, microstructure, and corrosion property of additive-manufactured NiTi alloy. Adv Eng Mater. 2023;25:2300184. doi:10.1002/adem.202300184
  • Yuan LH, Gu DD, Lin KJ, et al. Electrically actuated shape recovery of NiTi components processed by laser powder bed fusion after regulating the dimensional accuracy and phase transformation behavior. Chin J Mech Eng Addit Manuf Front. 2022;1:100056.
  • Yang L, Li Y, Wu SQ, et al. Tailorable and predictable mechanical responses of additive manufactured TPMS lattices with graded structures. Mater Sci Eng A-Struct Mater Prop Microstruct Process. 2022;843:143109. doi:10.1016/j.msea.2022.143109
  • Li BQ, Wang L, Wang BB, et al. Solidification characterization and its correlation with the mechanical properties and functional response of NiTi shape memory alloy. Addit Manuf. 2021;48:102468.
  • Li Z, Xiao F, Chen H, et al. Atomic scale modeling of the coherent strain field surrounding Ni4Ti3 precipitate and its effects on thermally-induced martensitic transformation in a NiTi alloy. Acta Mater. 2021;211:116883. doi:10.1016/j.actamat.2021.116883
  • Zhao M, Zhang DZ, Liu F, et al. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces. Int J Mech Sci. 2020;167:105262. doi:10.1016/j.ijmecsci.2019.105262
  • Yang Y, Zhan JB, Sun ZZ, et al. Evolution of functional properties realized by increasing laser scanning speed for the selective laser melting fabricated NiTi alloy. J Alloys Compd. 2019;804:220–229. doi:10.1016/j.jallcom.2019.06.340
  • Ha NS, Pham TM, Hao H, et al. Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing. Int J Mech Sci. 2021;201:106464. doi:10.1016/j.ijmecsci.2021.106464
  • Maconachie T, Lear M, Tran P, et al. The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures. Int J Adv Manuf Technol. 2022;118:4085–4104. doi:10.1007/s00170-021-08203-y
  • Wang P, Yang F, Li PH, et al. Design and additive manufacturing of a modified face-centered cubic lattice with enhanced energy absorption capability. Extreme Mech Lett. 2021;47:101358. doi:10.1016/j.eml.2021.101358
  • Smith M, Guan Z, Cantwell WJ. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci. 2013;67:28–41. doi:10.1016/j.ijmecsci.2012.12.004
  • Wang P, Yang F, Lu GX, et al. Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing. Compos Part B. 2022;234:109724. doi:10.1016/j.compositesb.2022.109724
  • Xiao LJ, Xu X, Feng GZ, et al. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. Int J Mech Sci. 2022;219:107093. doi:10.1016/j.ijmecsci.2022.107093
  • Cao XF, Xiao DB, Li Y, et al. Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure. Thin-Walled Struct. 2020;148:106586. doi:10.1016/j.tws.2019.106586
  • Yang L, Han CJ, Wu HZ, et al. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J Mech Behav Biomed Mater. 2020;109:103843. doi:10.1016/j.jmbbm.2020.103843
  • Wang P, Yang F, Ru DH, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. Mater Des. 2021;210:110116. doi:10.1016/j.matdes.2021.110116
  • Yang L, Li Y, Chen Y, et al. Topologically optimized lattice structures with superior fatigue performance. Int J Fatigue. 2022;165:107188. doi:10.1016/j.ijfatigue.2022.107188
  • Li LB, Yang F, Li PH, et al. A novel hybrid lattice design of nested cell topology with enhanced energy absorption capability. Aerosp Sci Technol. 2022;128:107776. doi:10.1016/j.ast.2022.107776
  • Feng Y, Liu BC, Wan XM, et al. Influence of processing parameter on phase transformation and superelastic recovery strain of laser solid forming NiTi alloy. J Alloys Compd. 2022;908:164568. doi:10.1016/j.jallcom.2022.164568
  • Oliveira J, Miranda R, Schell N, et al. High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue. 2016;83:195–200. doi:10.1016/j.ijfatigue.2015.10.013
  • Prajapati M, Kumar A, Lin S, et al. Multi-material additive manufacturing with lightweight closed-cell foam-filled lattice structures for enhanced mechanical and functional properties. Addit Manuf. 2022;54:102766.
  • Yan ZR, Zhu JN, Borisov E, et al. Superelastic response and damping behavior of additively manufactured Nitinol architectured materials. Addit Manuf. 2023;68:103505.