44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure homogenization and strength-ductility synergy improvement of the hybrid additive manufactured dual-phase titanium alloy by sub-critical annealing

ORCID Icon, , , , &
Article: 2382168 | Received 21 May 2024, Accepted 11 Jul 2024, Published online: 29 Jul 2024

References

  • Singh G, Ramamurty U. Boron modified titanium alloys. Prog Mater Sci. 2020;111:100653. doi:10.1016/j.pmatsci.2020.100653
  • Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844–879. doi:10.1016/j.actamat.2012.10.043
  • Zhao QY, Sun QY, Xin SW, et al. High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Mater Sci Eng, A. 2022;845:143260. doi:10.1016/j.msea.2022.143260
  • Sola A, Trinchi A. Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2230467. doi:10.1080/17452759.2023.2230467
  • Sui S, Chew Y, Weng F, et al. Achieving grain refinement and ultrahigh yield strength in laser aided additive manufacturing of Ti− 6Al− 4 V alloy by trace Ni addition. Virtual Phys Prototyp. 2021;16(4):417–427. doi:10.1080/17452759.2021.1949091
  • Dolev O, Osovski S, Shirizly A. Ti-6Al-4 V hybrid structure mechanical properties—Wrought and additive manufactured powder-bed material. Addit Manuf. 2021;37:101657. doi:10.1016/j.addma.2020.101657
  • Kuai ZZ, Li ZH, Liu B, et al. Microstructure and mechanical properties of CuCrZr/316L hybrid components manufactured using selective laser melting. J Alloys Compd. 2023;955:170103. doi:10.1016/j.jallcom.2023.170103
  • Zhai W, Wang P, Ng FL, et al. Hybrid manufacturing of γ-TiAl and Ti–6Al–4 V bimetal component with enhanced strength using electron beam melting. Compos Part B: Eng. 2021;207:108587. doi:10.1016/j.compositesb.2020.108587
  • Guo BJ, Zhang YS, He F, et al. Origins of the mechanical property heterogeneity in a hybrid additive manufactured Hastelloy X. Mater Sci Eng, A. 2021;823:141716. doi:10.1016/j.msea.2021.141716
  • Bandyopadhyay A, Zhang Y, Onuike B. Additive manufacturing of bimetallic structures. Virtual Phys Prototyp. 2022;17(2):256–294. doi:10.1080/17452759.2022.2040738
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi:10.1016/j.actamat.2016.07.019
  • Ma J, Zhang Y, Li J, et al. Microstructure and mechanical properties of forging-additive hybrid manufactured Ti–6Al–4 V alloys. Mater Sci Eng, A. 2021;811:140984. doi:10.1016/j.msea.2021.140984
  • Ma HY, Wang J, Qin P, et al. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior. J Mater Sci Technol. 2023;183:32–62. doi:10.1016/j.jmst.2023.11.003
  • Zhao D, Guo Y, Lai R, et al. Abnormal three-stage plastic deformation in a 17-4 PH stainless steel fabricated by laser powder bed fusion. Mater Sci Eng, A. 2022;858:144160. doi:10.1016/j.msea.2022.144160
  • Liu Z, Zhao D, Wang P, et al. Additive manufacturing of metals: Microstructure evolution and multistage control. J Mater Sci Technol. 2022;100:224–236. doi:10.1016/j.jmst.2021.06.011
  • Wu Y, Zhao X, Chen Q, et al. Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by selective laser melting. Virtual Phys Prototyp. 2022;17(3):451–467. doi:10.1080/17452759.2022.2037055
  • Wang T, Zhu YY, Zhang SQ, et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. J Alloys Compd. 2015;632:505–513. doi:10.1016/j.jallcom.2015.01.256
  • Lu HF, Deng WW, Luo KY, et al. Tailoring microstructure of additively manufactured Ti6Al4 V titanium alloy using hybrid additive manufacturing technology. Addit Manuf. 2023;63:103416. doi:10.1016/j.addma.2023.103416
  • Carroll BE, Palmer TA, Beese AM. Anisotropic tensile behavior of Ti–6Al–4 V components fabricated with directed energy deposition additive manufacturing. Acta Mater. 2015;87:309–320. doi:10.1016/j.actamat.2014.12.054
  • Chi JX, Cai ZY, Zhang HP, et al. Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties. Mater Sci Eng, A. 2021;818:141382. doi:10.1016/j.msea.2021.141382
  • Bambach M, Sizova I, Sydow B, et al. Hybrid manufacturing of components from Ti-6Al-4 V by metal forming and wire-arc additive manufacturing. J Mater Process Technol. 2020;282:116689. doi:10.1016/j.jmatprotec.2020.116689
  • Gao HW, Wang JW, Yang JW, et al. Heterogeneous deformation behavior of hybrid manufactured TC11 titanium alloy via directed energy deposition. Mater Sci Eng, A. 2023;867:144728. doi:10.1016/j.msea.2023.144728
  • Lu XF, Lin X, Chiumenti M, et al. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4 V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit Manuf. 2019;26:166–179. doi:10.1016/j.addma.2019.02.001
  • Kang N, Lin X, El Mansori M, et al. On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure. Addit Manuf. 2020;31:100911. doi:10.1016/j.addma.2019.100911
  • Ling WL, Wang XP, Li Y, et al. In-situ investigation on tensile deformation and fracture behaviors of inhomogeneous microstructure during laser repair of Ti-6Al-4 V titanium alloy. Eng Fract Mech. 2023;291:109538. doi:10.1016/j.engfracmech.2023.109538
  • Shen SX, He B, Wang HM. Heterogeneous deformation behavior of hybrid manufactured high strength titanium alloy: Coordinate deformation and stress concentration. Mater Sci Eng. A. 2022;849:143467. doi:10.1016/j.msea.2022.143467
  • Sabban R, Bahl S, Chatterjee K, et al. Globularization using heat treatment in additively manufactured Ti-6Al-4 V for high strength and toughness. Acta Mater. 2019;162:239–254. doi:10.1016/j.actamat.2018.09.064
  • Vrancken B, Thijs L, Kruth JP, et al. Heat treatment of Ti6Al4 V produced by Selective Laser Melting: Microstructure and mechanical properties. J Alloys Compd. 2012;541:177–185. doi:10.1016/j.jallcom.2012.07.022
  • Khorasani AM, Gibson I, Ghasemi A, et al. A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4 V. Virtual Phys Prototyp. 2019;14(4):349–359. doi:10.1080/17452759.2019.1614198
  • Liu D, Wu D, Ma G, et al. Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al-Cu alloy. Virtual Phys Prototyp. 2020;15(4):445–459. doi:10.1080/17452759.2020.1818021
  • Yan XC, Yin S, Chen CY, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4 V fabricated by selective laser melting. J Alloys Compd. 2018;764:1056–1071. doi:10.1016/j.jallcom.2018.06.076
  • Liang ZL, Sun ZG, Zhang WS, et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4 V alloy. J Alloys Compd. 2019;782:1041–1048. doi:10.1016/j.jallcom.2018.12.051
  • Lu Y, Tang H, Fang Y, et al. Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4 V alloy. Mater Des. 2012;37:56–63. doi:10.1016/j.matdes.2011.12.016
  • Zhao Z, Chen J, Tan H, et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4 V titanium alloy through equiaxial alpha microstructure. Scr Mater. 2018;146:187–191. doi:10.1016/j.scriptamat.2017.11.021
  • Zhang G, Li N, Gao J, et al. Wire-fed electron beam directed energy deposition of Ti–6Al–2Zr–1Mo–1 V alloy and the effect of annealing on the microstructure: texture, and anisotropy of tensile properties. Addit Manuf. 2022;49:102511. doi:10.1016/j.addma.2021.102511
  • Li RK, Wang HM, Zheng DD, et al. Texture evolution during sub-critical annealing and its effect on yield strength anisotropy of laser directed energy deposited Ti-6Al-2Zr-1Mo-1 V alloy. Mater Sci Eng, A. 2022;850:143556. doi:10.1016/j.msea.2022.143556
  • Kamath RR, Nandwana P, Ren Y, et al. Solidification texture,: variant selection, and phase fraction in a spot-melt electron-beam powder bed fusion processed Ti-6Al-4 V. Addit Manuf. 2021;46:102136. doi:10.1016/j.addma.2021.102136
  • Wang WK, Chen WZ, Zhang WC, et al. Effect of deformation temperature on texture and mechanical properties of ZK60 magnesium alloy sheet rolled by multi-pass lowered-temperature rolling. Mater Sci Eng, A. 2018;712:608–615. doi:10.1016/j.msea.2017.12.024
  • Ter Haar GM, Becker TH. The influence of microstructural texture and prior beta grain recrystallisation on the deformation behaviour of laser powder bed fusion produced Ti–6Al–4 V. Mater Sci Eng, A. 2021;814:141185. doi:10.1016/j.msea.2021.141185
  • Zou Z, Simonelli M, Katrib J, et al. Microstructure and tensile properties of additive manufactured Ti-6Al-4 V with refined prior-β grain structure obtained by rapid heat treatment. Mater Sci Eng, A. 2021;814:141271. doi:10.1016/j.msea.2021.141271
  • Sofinowski K, Smíd M, Kubena I, et al. In situ characterization of a high work hardening Ti-6Al-4 V prepared by electron beam melting. Acta Mater. 2019;179:224–236. doi:10.1016/j.actamat.2019.08.037
  • Kang J, Oh HS, Wei S, et al. An in situ study of microstructural strain localization and damage evolution in an (α+ β) Ti-Al-V-Fe-Si-O alloy. Acta Mater. 2023;242:118424. doi:10.1016/j.actamat.2022.118424
  • Warwick JLW, Jones NG, Rahman KM, et al. Lattice strain evolution during tensile and compressive loading of CP Ti. Acta Mater. 2012;60(19):6720–6731. doi:10.1016/j.actamat.2012.08.042
  • Stapleton AM, Raghunathan SL, Bantounas I, et al. Evolution of lattice strain in Ti–6Al–4 V during tensile loading at room temperature. Acta Mater. 2008;56(20):6186–6196. doi:10.1016/j.actamat.2008.08.030
  • Syn C, Lesuer D, Sherby O. Enhancing tensile ductility of a particulate-reinforced aluminum metal matrix composite by lamination with Mg-9% Li alloy. Mater Sci Eng, A. 1996;206(2):201–207. doi:10.1016/j.msea.2021.141271
  • Wu Y, Liaw PK, Li R, et al. Relationship between the unique microstructures and behaviors of high-entropy alloys. Int J Miner Metall Mater. 2024;31(6):1350–1363. doi:10.1007/s12613-023-2777-4
  • Ren Y-M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4 V alloy by high-power laser solid forming. Acta Mater. 2017;132:82–95. doi:10.1016/j.actamat.2017.04.026
  • Cai C, Wu X, Liu W, et al. Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance. J Mater Sci Technol. 2020;57:51–64. doi:10.1016/j.jmst.2020.05.004
  • Liu Y, Xu L, Qiu C. Development of an additively manufactured metastable beta titanium alloy with a fully equiaxed grain structure and ultrahigh yield strength. Addit. Manuf. 2022;60:103208. doi:10.1016/j.addma.2022.103208
  • Zhang XY, Fang G, Leeflang S, et al. Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4 V alloy. J Alloys Compd. 2018;735:1562–1575. doi:10.1016/j.jallcom.2017.11.263
  • Fan H, Yang S. Effects of direct aging on near-alpha Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) titanium alloy fabricated by selective laser melting (SLM). Mater Sci Eng, A. 2020;788:139533. doi:10.1016/j.msea.2020.139533
  • Zhang F, Wang K, Li Y, et al. Composition fine-tuning for directed energy deposition of Ti-6Al-4 V. J Mater Process Technol. 2022;299:117321. doi:10.1016/j.jmatprotec.2021.117321
  • Wang XW, Wang CJ, Liu Y, et al. An energy based modeling for the acoustic softening effect on the Hall-Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension. Int J Plast. 2021;136:102879. doi:10.1016/j.ijplas.2020.102879
  • Sun Z, Wu H, Sun Q, et al. Tri-modal microstructure in high temperature toughening and low temperature strengthening treatments of near-β forged TA15 Ti-alloy. Mater Charact. 2016;121:213–221. doi:10.1016/j.matchar.2016.10.010
  • Sun Z, Li X, Wu H, et al. Morphology evolution and growth mechanism of the secondary Widmanstatten α phase in the TA15 Ti-alloy. Mater Charact. 2016;118:167–174. doi:10.1016/j.matchar.2016.06.026
  • Benmessaoud F, Cheikh M, Velay V, et al. Role of grain size and crystallographic texture on tensile behavior induced by sliding mechanism in Ti-6Al-4 V alloy. Mater Sci Eng, A. 2020;774:138835. doi:10.1016/j.msea.2019.138835
  • Yang JJ, Yu HC, Wang ZM, et al. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4 V alloy. Mater Charact. 2017;127:137–145. doi:10.1016/j.matchar.2017.01.014
  • Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation. Acta Mater. 2005;53(3):555–567. doi:10.1016/j.actamat.2004.09.040
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185–191. doi:10.1080/21663831.2014.935821
  • Liang Y-J, Liu D, Wang H-M. Microstructure and mechanical behavior of commercial purity Ti/Ti–6Al–2Zr–1Mo–1 V structurally graded material fabricated by laser additive manufacturing. Scr Mater. 2014;74:80–83. doi:10.1016/j.scriptamat.2013.11.002
  • Mompiou F, Caillard D, Legros M, et al. In situ TEM observations of reverse dislocation motion upon unloading in tensile-deformed UFG aluminium. Acta Mater. 2012;60(8):3402–3414. doi:10.1016/j.actamat.2012.02.049
  • Zhu YT, Ameyama K, Anderson PM, et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater Res Lett. 2021;9(1):1–31. doi:10.1080/21663831.2020.1796836
  • Shuai C, Zhao Y, Deng Y, et al. Heterogeneous grain structure in biodegradable Zn prepared via mechanical alloying and laser powder bed fusion for strength-plasticity synergy. Virtual Phys Prototyp. 2024;19(1):e2317780. doi:10.1080/17452759.2024.2317780
  • Yu S, Wang P, Li H, et al. Heterogeneous microstructure and mechanical behaviour of Al-8.3 Fe-1.3 V-1.8 Si alloy produced by laser powder bed fusion. Virtual Phys Prototyp. 2023;18(1):e2155197. doi:10.1080/17452759.2022.2155197