0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stabilising mechanism of cathode jet and droplet transfer in hybrid-laser–GMAW-based directed energy deposition of titanium alloy

, , , , , , , & show all
Article: e2384659 | Received 08 May 2024, Accepted 19 Jul 2024, Published online: 02 Aug 2024

References

  • Veiga C, Davim JP, Loureiro AJR. Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci. 2012;32(2):133–148.
  • Xiong Y, Tang Y, Zhou Q, et al. Intelligent additive manufacturing and design state of the art and future perspectives. Addit Manuf (PA). 2022;59:103139–103151. doi:10.1016/j.addma.2022.103139.
  • Yi H, Jia L, Ding J, et al. Achieving material diversity in wire arc additive manufacturing: Leaping from alloys to composites via wire innovation. Int J Mach Tools Manuf. 2024;194:104103–104155. doi:10.1016/j.ijmachtools.2023.104103
  • Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573–1587. doi:10.1016/j.jclepro.2016.04.150
  • Bandyopadhyay A, Traxel KD, Lang M, et al. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater Today. 2022;52:207–224. doi:10.1016/j.mattod.2021.11.026
  • Szost BA, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater Des. 2016;89:559–567. doi:10.1016/j.matdes.2015.09.115
  • Biswal R, Zhang X, Syed AK, et al. Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int J Fatigue. 2019;122:208–217. doi:10.1016/j.ijfatigue.2019.01.017
  • Lee TH, Kam DH, Oh JH, et al. Ti–6Al–4V alloy deposition characteristics at electrode-negative polarity in the cold metal transfer–gas metal arc process. J Mater Res Technol. 2022;19:685–696. doi:10.1016/j.jmrt.2022.05.030
  • Choudhury SS, Marya SK, Amirthalingam M. Improving arc stability during wire arc additive manufacturing of thin-walled titanium components. J Manuf Process. 2021;66:53–69. doi:10.1016/j.jmapro.2021.03.033
  • Lee TH, Kang M, Oh JH, et al. Deposition quality and efficiency improvement method for additive manufacturing of Ti–6Al–4V using gas metal arc with CMT. J Mater Process Technol. 2022;308:117720. doi:10.1016/j.jmatprotec.2022.117720
  • Zhiyong L, Srivatsan TS, Yan LI, et al. Coupling of laser with plasma arc to facilitate hybrid welding of metallic materials: a review. J Mater Eng Perform. 2013;22:384–395. doi:10.1007/s11665-012-0280-6
  • Meng Y, Gao M, Zeng X. Quantitative analysis of synergic effects during laser-arc hybrid welding of AZ31 magnesium alloy. Opt Lasers Eng. 2018;111:183–192. doi:10.1016/j.optlaseng.2018.08.013
  • Meng Y, Gao M, Zeng X. Effects of arc types on the laser-arc synergic effects of hybrid welding. Opt Express. 2018;26(11):14775–14785. doi:10.1364/OE.26.014775
  • Chen YB, Zhao YB, Lei ZL, et al. Effects of laser induced metal vapour on arc plasma during laser arc double sided welding of 5A06 aluminium alloy. Sci Technol Weld Joining. 2012;17(1):69–76. doi:10.1179/1362171811Y.0000000078
  • Shinn BW, Farson DF, Denney PE. Laser stabilisation of arc cathode spots in titanium welding. Sci Technol Weld Joining. 2005;10(4):475–481. doi:10.1179/174329305X46673
  • Lee TH, Kim C, Oh JH, et al. Visualization of cathode spot control using laser irradiation and oxide addition in wire arc additive manufacturing of titanium alloys. J Laser Appl. 2022;34(4):042024–042032. doi:10.2351/7.0000738.
  • Reisgen U, Krivtsun I, Gerhards B, et al. Experimental research of hybrid welding processes in combination of gas tungsten arc with CO2-or Yb: YAG-laser beam. J Laser Appl. 2016;28(2):022402–022406. doi:10.2351/1.4944096.
  • Mu Z, Chen X, Zheng Z, et al. Laser cooling arc plasma effect in laser-arc hybrid welding of 316L stainless steel. Int J Heat Mass Transf. 2019;132:861–870. doi:10.1016/j.ijheatmasstransfer.2018.12.050
  • Mu Z, Chen X, Hu R, et al. Laser induced arc dynamics destabilization in laser-arc hybrid welding. J Phys D Appl Phys. 2020;53(7):075202. doi:10.1088/1361-6463/ab5758
  • Liu F, Yang B, Sun H, et al. Mechanism investigation for the influence of laser power on droplet transfer behaviors in laser-MIG hybrid welding. Opt Laser Technol. 2023;157:108750. doi:10.1016/j.optlastec.2022.108750
  • Li F, Tao W, Peng G, et al. Behavior and stability of droplet transfer under laser-MIG hybrid welding with synchronized pulse modulations. J Manuf Process. 2020;54:70–79. doi:10.1016/j.jmapro.2020.02.017
  • Liu D, Lee B, Babkin A, et al. Research progress of arc additive manufacture technology. Materials (Basel). 2021;14(6):1415. doi:10.3390/ma14061415
  • Controls and process planning strategies for 5-axis laser directed energy deposition of Ti-6al-4v using an 8-axis industrial robot and rotary motion. Addit Manuf. 2022;58:103048.
  • Halder R, Pistorius PC, Blazanin S, et al. The effect of interlayer delay on the heat accumulation, microstructures, and properties in laser hot wire directed energy deposition of Ti-6Al-4V single-wall. Materials. 2024;17(13):3307. doi:10.3390/ma17133307
  • Wu B, Ding D, Pan Z, et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc additive manufacturing of Ti6Al4V. J Mater Process Technol. 2017;250:304–312. doi:10.1016/j.jmatprotec.2017.07.037
  • Olsen HN. Thermal and electrical properties of an argon plasma. Phys Fluids. 1959;2(6):614.
  • Nomura K, Kishi T, Shirai K, et al. 3D temperature measurement of tandem TIG arc plasma, Weld. World. 2013;57:649–656.
  • Xiao X, Hua X, Wu Y. Comparison of temperature and composition measurement by spectroscopic methods for argon–helium arc plasma. Laser Technol. 2015;66:138–145. doi:10.1016/j.optlastec.2014.08.017
  • White WB, Johnson SM, Dantzig GB. Chemical equilibrium in complex mixtures. J Chem Phys. 1958;28(5):751–755. doi:10.1063/1.1744264
  • USHIO M. Arc discharge and its application. Tetsu-to-Hagane. 1987;73(10):1309–1315. doi:10.2355/tetsutohagane1955.73.10_1309
  • Wilson RG. Vacuum thermionic work functions of polycrystalline Be, Ti, Cr, Fe, Ni, Cu, Pt, and type 304 stainless steel. J Appl Phys. 1966;37(6):2261–2267. doi:10.1063/1.1708797
  • Uda M, Nakamura A, Yamamoto T, et al. Work function of polycrystalline Ag, Au and Al. J Electron Spectrosc Relat Phenom. 1998;88:643–648.
  • Guile AE. Arc-electrode phenomena. In Proceedings of the Institution of Electrical Engineers (Vol. 118, No. 9R). IET Digital Library; 1971. pp. 1131–1154.
  • Xiao X, Wu D, Komen H, et al. Influencing mechanisms of melt behavior on metal vapor characteristic and columnar grain formation in wire-arc directed energy deposition of titanium alloy. Addit Manuf. 2024;82:104029–104042. doi:10.1016/j.addma.2024.104029.
  • Kim DM, Kim J, Park SS, et al. Surface modification of the patterned Al6061/SUS304 metal plates using the large electron beam. Appl Surf Sci. 2012;261:458–463. doi:10.1016/j.apsusc.2012.08.032
  • Khairallah SA, Anderson AT, Rubenchik A, et al. Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi:10.1016/j.actamat.2016.02.014
  • Wu D, Sun J, Li Z, et al. Dynamic vapor and keyhole behavior, and equiaxed dendrite formation in blue laser processing of copper. Int J Heat Mass Transf. 2023;209:124102. doi:10.1016/j.ijheatmasstransfer.2023.124102
  • Wu D, Tashiro S, Wu Z, et al. Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation. Int J Heat Mass Transf. 2020;147:118921. doi:10.1016/j.ijheatmasstransfer.2019.118921
  • Kodama N, Tanaka Y, Kita K, et al. Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis. J Phys D Appl Phys. 2016;49(30):305501. doi:10.1088/0022-3727/49/30/305501
  • Wu D, Ishida K, Tashiro S, et al. Dynamic keyhole behaviors and element mixing in paraxial hybrid plasma-MIG welding with a gap. Int J Heat Mass Transf. 2023;200:123551. doi:10.1016/j.ijheatmasstransfer.2022.123551
  • Murphy AB. Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. J Phys D Appl Phys. 2013;46(22):224004. doi:10.1088/0022-3727/46/22/224004
  • Sun W, Liu S, Guo F, et al. Investigation on droplet transfer behavior during fiber laser-flux cored arc hybrid welding. Opt Laser Technol. 2022;148:107781. doi:10.1016/j.optlastec.2021.107781
  • Moradi M, Ghoreishi M, Frostevarg J, et al. An investigation on stability of laser hybrid arc welding. Opt Lasers Eng. 2013;51(4):481–487. doi:10.1016/j.optlaseng.2012.10.016
  • Boivineau M, Cagran C, Doytier D, et al. Thermophysical properties of solid and liquid Ti-6Al-4 V (TA6 V) alloy. Int J Thermophys. 2006;27:507–529. doi:10.1007/PL00021868
  • Kim YS, Eagar TW. Analysis of metal transfer in gas metal arc welding. Weld J. 1993;72:269–278.
  • Zhang X, Gao H, Li Z. Forces analysis of droplets and accurate control of metal transfer in GMAW by utilizing droplet resonance. J Manuf Process. 2021;70:121–131. doi:10.1016/j.jmapro.2021.08.028
  • Eickhoff ST, Eagar TW. Characterization of spatter in low-current GMAW of titanium alloy plate. Weld J. 1990;69(10):382.
  • Li K, Wu Z, Liu C. Measurement and calculation of plasma drag force in arc welding based on high-speed photography technology and particle dynamics. Mater Des. 2015;85:97–101. doi:10.1016/j.matdes.2015.06.156
  • Matsuoka L, Hasegawa S. Two-color resonance ionization spectroscopy of highly excited titanium atoms. JOSA B. 2007;24(10):2562–2579. doi:10.1364/JOSAB.24.002562
  • Schoenfeld WG, Chang ES, Geller M, et al. High excitation Rydberg levels of Fe I from the ATMOS solar spectrum at 2.5 and 7 mum. Astron Astrophys. 1995;301:593.