0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustainable product design by large format additive manufacturing of cork composites

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2386106 | Received 23 Apr 2024, Accepted 24 Jul 2024, Published online: 02 Aug 2024

References

  • Li Y, Ren X, Zhu L, et al. Biomass 3D printing: principles, materials, post-processing and applications. Polymers (Basel). 2023;15:2692. doi:10.3390/polym15122692
  • Moreno Nieto D, Molina SI. Large-format fused deposition additive manufacturing: a review. Rapid Prototyp J. 2020;26:793–799. doi:10.1108/RPJ-05-2018-0126
  • Pignatelli F, Percoco G. An application- and market-oriented review on large format additive manufacturing, focusing on polymer pellet-based 3D printing. Prog Addit Manuf. 2022;7:1363–1377. doi:10.1007/s40964-022-00309-3
  • Rajvanshi J, Sogani M, Kumar A, et al. Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Sci Total Environ. 2023;874:162441. doi:10.1016/j.scitotenv.2023.162441
  • Romani A, Levi M, Pearce JM. Recycled polycarbonate and polycarbonate/acrylonitrile butadiene styrene feedstocks for circular economy product applications with fused granular fabrication-based additive manufacturing. Sustain Mater Technol. 2023;38:e00730. doi:10.1016/j.susmat.2023.e00730
  • Moreno Nieto D, Casal López V, Molina SI. Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf. 2018;23:79–85. doi:10.1016/j.addma.2018.07.012
  • Nieto DM, Pintos PB, Sánchez DM, et al. Large format additive manufacturing in furniture design with novel cork based polymeric materials. In: Francisco Cavas-Martínez, Manuel D. Marín Granados, Ramón Mirálbes Buil and Oscar D. de-Cózar-Macías, editors. Advances in design engineering III. Cham: Springer International Publishing; 2023. p. 477–489.
  • Zheng J, Suh S. Strategies to reduce the global carbon footprint of plastics. Nat Clim Chang. 2019;9:374–378. doi:10.1038/s41558-019-0459-z
  • Rahman AM, Rahman TT, Pei Z, et al. Additive manufacturing using agriculturally derived biowastes: a systematic literature review. Bioengineering. 2023;10:845. doi:10.3390/bioengineering10070845
  • Fernandes EM, Correlo VM, Mano JF, et al. Novel cork–polymer composites reinforced with short natural coconut fibres: effect of fibre loading and coupling agent addition. Compos Sci Technol. 2013;78:56–62. doi:10.1016/j.compscitech.2013.01.021
  • Camarero JJ, Sánchez-Miranda Á, Colangelo M, et al. Climatic drivers of cork growth depend on site aridity. Sci Total Environ. 2024;912:169574. doi:10.1016/j.scitotenv.2023.169574
  • Mestre A, Vogtlander J. Eco-efficient value creation of cork products: an LCA-based method for design intervention. J Clean Prod. 2013;57:101–114. doi:10.1016/j.jclepro.2013.04.023
  • Ramos T, Matos AM, Sousa-Coutinho J. Strength and durability of mortar using cork waste ash as cement replacement. Mater Res. 2014;17:893–907. doi:10.1590/S1516-14392014005000092
  • Atanes E, Nieto-Márquez A, Cambra A, et al. Adsorption of SO2 onto waste cork powder-derived activated carbons. Chem Eng J. 2012;211–212:60–67. doi:10.1016/j.cej.2012.09.043
  • Novais RM, Senff L, Carvalheiras J, et al. Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cem Concr Compos. 2019;97:107–117. doi:10.1016/j.cemconcomp.2018.12.024
  • Fernandes EM, Correlo VM, Mano JF, et al. Cork–polymer biocomposites: mechanical, structural and thermal properties. Mater Des. 2015;82:282–289. doi:10.1016/j.matdes.2015.05.040
  • Niknejad A, Moradi A. A novel solid cylindrical composite material made of agglomerated cork inserts and silicone rubber resin during the flattening process. Int J Mech Sci. 2016;115–116:105–122. doi:10.1016/j.ijmecsci.2016.06.007
  • Martins CI, Gil V. Processing–structure–properties of cork polymer composites. Front Mater. 2020;7:297. https://www.frontiersin.org/article/10.3389fmats.2020.00297
  • Romero-Ocaña I, Molina SI. Cork photocurable resin composite for stereolithography (SLA): influence of cork particle size on mechanical and thermal properties. Addit Manuf. 2022;51:102586. doi:10.1016/j.addma.2021.102586
  • Gama N, Ferreira A, Evtuguin D, et al. Modified cork/SEBS composites for 3D printed elastomers. Polym Adv Technol. 2022;33:1881–1891. doi:10.1002/pat.5644
  • Alvarez Gómez M, Moreno Nieto D, Moreno Sánchez D, et al. Additive manufacturing of thermoplastic polyurethane-cork composites for material extrusion technologies. Polymers (Basel). 2023;15:3291. doi:10.3390/polym15153291
  • de León AS, Núñez-Gálvez F, Moreno-Sánchez D, et al. Polymer composites with cork particles functionalized by surface polymerization for fused deposition modeling. ACS Appl Polym Mater. 2022;4:1225–1233. doi:10.1021/acsapm.1c01632
  • TDS SMARTFIL CORK, Accessed: July 10, 2024. [Online]. Available: https://www.smartmaterials3d.com/en/cork.
  • Klyusov N, Garin N, Usenyuk-Kravchuk S, et al. A biomorphic approach to designing special-purpose vehicles for Arctic conditions. Biomimetics. 2023;8:360. doi:10.3390/biomimetics8040360
  • Li Y, Zhao Y, Chi Y, et al. Shape-morphing materials and structures for energy-efficient building envelopes. Mater Today Energy. 2021;22:100874. doi:10.1016/j.mtener.2021.100874
  • Kumar DS, Purani K, Viswanathan SA. The indirect experience of nature: biomorphic design forms in servicescapes. J Serv Mark. 2020;34:847–867. doi:10.1108/JSM-10-2019-0418
  • Tao J, Tahmasebi P, Kader MA, et al. Wood biomimetics: capturing and simulating the mesoscale complexity of willow using cross-correlation reconstruction algorithm and 3D printing. Mater Des. 2023;228:111812. doi:10.1016/j.matdes.2023.111812
  • Ufodike CO, Ahmed MF, Dolzyk G. Additively manufactured biomorphic cellular structures inspired by wood microstructure. J Mech Behav Biomed Mater. 2021;123:104729. doi:10.1016/j.jmbbm.2021.104729
  • F. Pérez-Arribas, parametric generation of small ship hulls with CAD software. J Mar Sci Eng. 2023;11:976. doi:10.3390/jmse11050976
  • Efstathiadis A, Symeonidou I, Tsongas K, et al. Parametric design and mechanical characterization of 3D-printed PLA composite biomimetic voronoi lattices inspired by the stereom of sea urchins. J Compos Sci. 2023;7:3. doi:10.3390/jcs7010003
  • Gokmen S. Stripped and layered fabrication of minimal surface tectonics using parametric algorithms. Curved Layered Struct. 2023;10:20220210. doi:10.1515/cls-2022-0210
  • Costantino D, Grimaldi A, Pepe M. 3D modelling of buildings and urban areas using grasshopper and Rhinocersos. Geographia Technica. 2022;17:167–176. doi:10.21163/GT_2022.171.13
  • García-Dominguez A, Claver J, Sebastián MA. Optimization methodology for additive manufacturing of customized parts by fused deposition modeling (FDM). application to a shoe heel. Polymers (Basel). 2020;12:2119. doi:10.3390/POLYM12092119
  • Burgos Pintos P, Sanz de León A, Molina SI. Large format additive manufacturing of polyethylene terephthalate (PET) by material extrusion. Addit Manuf. 2024;79:103908. doi:10.1016/j.addma.2023.103908
  • Duty C, Ajinjeru C, Kishore V, et al. A viscoelastic model for extrusion-based 3D printing of polymers what makes a material printable ? J Manuf Process. 2017;Submitted:526–537. doi:10.1016/j.jmapro.2018.08.008
  • Ajinjeru C, Kishore V, Liu P, et al. Determination of melt processing conditions for high performance amorphous thermoplastics for large format additive manufacturing. Addit Manuf. 2018;21:125–132. doi:10.1016/j.addma.2018.03.004
  • Northcutt LA, Orski SV, Migler KB, et al. Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer. 2018;154:182–187. doi:10.1016/j.polymer.2018.09.018
  • Burgos Pintos P, Moreno Sánchez D, Delgado FJ, et al. Influence of the carbon fiber length distribution in polymer matrix composites for large format additive manufacturing via fused granular fabrication. Polymers (Basel). 2024;16:60. doi:10.3390/polym16010060
  • Yeole P, Hassen AA, Kim S, et al. Mechanical characterization of high-temperature carbon fiber-polyphenylene sulfide composites for large area extrusion deposition additive manufacturing. Addit Manuf. 2020;34:101255. doi:10.1016/j.addma.2020.101255
  • Copenhaver K, Smith T, Armstrong K, et al. Recyclability of additively manufactured bio-based composites. Compos B Eng. 2023;255:110617. doi:10.1016/j.compositesb.2023.110617
  • Brites F, Malça C, Gaspar F, et al. Cork plastic composite optimization for 3D printing applications. Procedia Manuf. 2017;12:156–165. doi:10.1016/j.promfg.2017.08.020
  • Magalhães da Silva SP, Antunes T, Costa MEV, et al. Cork-like filaments for additive manufacturing. Addit Manuf. 2020;34:101229. doi:10.1016/j.addma.2020.101229
  • Daver F, Lee KPM, Brandt M, et al. Cork–PLA composite filaments for fused deposition modelling. Compos Sci Technol. 2018;168:230–237. doi:10.1016/j.compscitech.2018.10.008
  • Nóvoa PJRO, Ribeiro MCS, Ferreira AJM, et al. Mechanical characterization of lightweight polymer mortar modified with cork granulates. Compos Sci Technol. 2004;64:2197–2205. doi:10.1016/j.compscitech.2004.03.006
  • Dairi B, Bellili N, Hamour N, et al. Cork waste valorization as reinforcement in high-density polyethylene matrix. Mater Today Proc. 2022;53:117–122. doi:10.1016/j.matpr.2021.12.420
  • Tedeschi A, Wirz F. Aad algorithms-aided design: parametric strategies using grasshopper. Brienza: Le Penseur; 2015.