482
Views
18
CrossRef citations to date
0
Altmetric
Articles

Analysis on band gap properties of periodic structures of bar system using the spectral element method

, &
Pages 349-372 | Received 23 May 2013, Accepted 27 Jul 2013, Published online: 02 Sep 2013

References

  • Sigalas M, Economou EN. Band structure of elastic waves in two dimensional systems. Solid State Commun. 1993;86:141–143.
  • Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993;71:2022–2025.
  • Narisetti RK, Leamy MJ, Ruzzene M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 2010;132:031001.
  • Narisetti RK, Ruzzene M, Leamy MJ. A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices. J. Vib. Acoust. 2011;133:061020.
  • Farzbod F, Leamy MJ. Analysis of Bloch’s method in structures with energy dissipation. J. Vib. Acoust. 2011;133:051010.
  • Xu ZD. Earthquake mitigation study on viscoelastic dampers for reinforced concrete structures. J. Vib. Control. 2007;13:29–45.
  • Xu ZD. Horizontal shaking table tests on structures using innovative earthquake mitigation devices. J. Sound Vib. 2009;325:34–48.
  • Wu FG, Liu ZY, Liu YY. Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. J. Phys. D Appl. Phys. 2002;35:162–165.
  • Sigalas MM, Economou EN. Elastic and acoustic wave band structure. J. Sound Vib. 1992;158:377–382.
  • Wang G, Wen JH, Wen XS. Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: application to locally resonant beams with flexural wave band gap. Phys. Rev. B. 2005;71:104302.
  • Cetinkaya C, Vakakis AF. Transient axisymmetric stress wave propagation in weakly coupled layered structures. J. Sound Vib. 1996;194:389–416.
  • Li FM, Wang YS. Study on wave localization in disordered periodic layered piezoelectric composite structures. Int. J. Solids Struct. 2005;42:6457–6474.
  • Psarobas IE, Stefanou N, Modinos A. Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B. 2000;62:278–291.
  • Chen HY, Luo XD, Ma HR. Scattering of elastic waves by elastic spheres in a NaCl-type phononic crystal. Phys. Rev. B. 2007;75:024306.
  • Cao YJ, Hou ZL, Liu YY. Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun. 2004;132:539–543.
  • Sun JH, Wu TT. Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Phys. Rev. B. 2007;76:104304.
  • Sigalas MM, Economou EN. Elastic waves in plates with periodically placed inclusions. J. Appl. Phys. 1994;75:2845–2850.
  • Kushwaha MS, Halevi P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Appl. Phys. Lett. 1996;69:31–33.
  • Wang YZ, Li FM, Huang WH, Wang YS. Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys.: Condens. Matter. 2007;19:496204.
  • Liu Y, Gao LT. Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Commun. 2007;144:89–93.
  • Yan ZZ, Wang YS. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B. 2006;74:224303.
  • Yan ZZ, Wang YS. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B. 2008;78:094306.
  • Wu ZJ, Li FM, Wang YZ. Study on vibration characteristics in periodic plate structures using the spectral element method. Acta Mech. 2013;224:1089–1101.
  • Irwin JD. Basic engineering circuit analysis. New York: John Wiley; 2002.
  • Walton AK. Network analysis and practice. New York: Cambridge University Press; 1987.
  • Doyle JF, Farris TN. A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 1990;5:99–107.
  • Doyle JF. Wave propagation in structures: spectral analysis using fast discrete Fourier transforms. New York: Springer; 1997.
  • Lee U. Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 2001;8:357–366.
  • Lee U. Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 1998;20:587–592.
  • Lee U. Spectral element method in structural dynamics. Singapore: John Wiley; 2009.
  • Banerjee JR. Dynamic stiffness formulation for structural elements: a general approach. Comput. Struct. 1997;63:101–103.
  • Banerjee JR. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. J. Sound Vib. 2004;270:379–401.
  • Banerjee JR, Su H, Jayatunga C. A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings. Comput. Struct. 2008;86:573–579.
  • Żak A. A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elem. Anal. Des. 2009;45:650–658.
  • Zhu CY, Qin GL, Zhang JZ. Implicit Chebyshev spectral element method for acoustics wave equations. Finite Elem. Anal. Des. 2011;47:184–194.
  • Lee U, Kim J. Spectral element modeling for the beams treated with active constrained layer damping. Int. J. Solids Struct. 2001;38:5679–5702.
  • Chakraborty A, Gopalakrishinan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 2003;40:2421–2448.
  • Banerjee JR, Williams FW. Free vibration of composite beams – an exact method using symbolic computation. J. Aircraft. 1995;32:636–642.
  • Lee U, Oh H. Evaluation of the structural properties of single-walled carbon nanotubes using a dynamic continuum modeling method. Mech. Adv. Mater. Struct. 2008;15:79–87.
  • Oh H, Lee U, Park DH. Dynamics of an axially moving Bernoulli-Euler beam: spectral element modeling and analysis. KSME Int. J. 2004;18:395–406.
  • Wang G, Wereley NM. Spectral finite element analysis of sandwich beams with passive constrained layer damping. J. Vib. Acoust. 2002;124:376–386.
  • Yuan S, Ye K, Williams FW. Second order mode-finding method in dynamic stiffness matrix methods. J. Sound Vib. 2004;269:689–708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.