296
Views
12
CrossRef citations to date
0
Altmetric
Articles

Dynamic property analysis of the space-frame structure using the spectral element method

, &
Pages 404-420 | Received 23 Mar 2014, Accepted 29 May 2014, Published online: 01 Jul 2014

References

  • Gherlone M, Cerracchio P, Mattone M, Di Sciuva M, Tessler A. Shape sensing of 3D frame structures using an inverse finite element method. Int. J. Solids Struct. 2012;49:3100–3112.10.1016/j.ijsolstr.2012.06.009
  • Trahair NS, Bradford MA, Nethercot DA, Gardner L. The behaviour and design of steel structures to EC3. 4th ed. London: Taylor & Francis Group; 2008.
  • Zapico-Valle JL, García-Diéguez M, Alonso-Camblor R. Nonlinear modal identification of a steel frame. Eng. Struct. 2013;56:246–259.10.1016/j.engstruct.2013.04.026
  • Türker T, Bayraktar A. Finite element model calibration of steel frame buildings with and without brace. J. Constr. Steel Res. 2013;90:164–173.10.1016/j.jcsr.2013.08.003
  • Ju F, Choo YS, Cui FS. Dynamic response of tower crane induced by the pendulum motion of the payload. Int. J. Solids Struct. 2006;43:376–389.10.1016/j.ijsolstr.2005.03.078
  • Şakar G, Öztürk H, Sabuncu M. Dynamic stability of multi-span frames subjected to periodic loading. J. Constr. Steel Res. 2012;70:65–70.10.1016/j.jcsr.2011.10.009
  • Oliveto G, Santini A. The dynamic response of coupled frame – wall systems to earthquake excitations. Eng. Struct. 1986;8:237–247.10.1016/0141-0296(86)90031-3
  • Olsson III RH, El-kady I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 2009;20:012002.10.1088/0957-0233/20/1/012002
  • Montero de Espinosa FR, Jimenez E, Torres M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 1998;80:1208–1211.
  • Robertson WM, Rudy JF III. Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. J. Acoust. Soc. Am. 1998;104:694–699.10.1121/1.423344
  • Sánchez-Pérez JV, Caballero D, Mártinez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 1998;80:5325–5328.10.1103/PhysRevLett.80.5325
  • Wu ZJ, Wang YZ, Li FM. Analysis on band gap properties of periodic structures of bar system using the spectral element method. Wave Random Complex. 2013;23:349–372. doi:10.1080/17455030.2013.830798.
  • Jensen JS. Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures. J. Sound Vib. 2003;266:1053–1078.10.1016/S0022-460X(02)01629-2
  • Hussein MI, Hulbert GM, Scott RA. Dispersive elastodynamics of 1D banded materials and structures: analysis. J. Sound Vib. 2006;289:779–806.10.1016/j.jsv.2005.02.030
  • Chen AL, Wang YS, Zhang CZ. Wave propagation in one-dimensional solid–fluid quasi-periodic and aperiodic phononic crystals. Phys. B. 2012;407:324–329.10.1016/j.physb.2011.10.041
  • Liu XN, Hu GK, Sun CT, Huang GL. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 2011;330:2536–2553.10.1016/j.jsv.2010.12.014
  • Liu Y, Gao LT. Explicit dynamic finite element method for band-structure calculations of 2D phononic crystals. Solid State Commun. 2007;144:89–93.10.1016/j.ssc.2007.08.014
  • Li FL, Wang YS, Zhang CZ, Yu GL. Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Eng. Anal. Bound. Elem. 2013;37:225–235.10.1016/j.enganabound.2012.10.003
  • Wang YZ, Li FM, Huang WH, Wang YS. Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys.: Condens. Matter. 2007;19:496204.
  • Cetinkaya C, Vakakis AF. Transient axisymmetric stress wave propagation in weakly coupled layered structures. J. Sound Vib. 1996;194:389–416.10.1006/jsvi.1996.0365
  • Narisetti RK, Ruzzene M, Leamy MJ. Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion. 2012;49:394–410.10.1016/j.wavemoti.2011.12.005
  • Yan ZZ, Wang YS. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Phys. Rev. B. 2008;78:094306.10.1103/PhysRevB.78.094306
  • Yan ZZ, Wang YS. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B. 2006;74:224303.10.1103/PhysRevB.74.224303
  • Doyle JF, Farris TN. A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 1990;5:99–107.
  • Doyle JF. Wave propagation in structures: spectral analysis using fast discrete fourier transforms. 2nd ed. New York, NY: Springer; 1997.10.1007/978-1-4612-1832-6
  • Lee U. Equivalent continuum representation of lattice beams: spectral element approach. Eng. Struct. 1998;20:587–592.10.1016/S0141-0296(97)00063-1
  • Lee U. Spectral element method in structural dynamics. Singapore: Wiley; 2009.10.1002/9780470823767
  • Santos ERO, Arruda JRF, Dos Santos JMC. Modeling of coupled structural systems by an energy spectral element method. J. Sound Vib. 2008;316:1–24.10.1016/j.jsv.2008.02.039
  • Lee U. Dynamic characterization of the joints in a beam structure by using spectral element method. Shock Vib. 2001;8:357–366.10.1155/2001/254020
  • Bercin AN, Tanaka M. Coupled flexural–torsional vibrations of Timoshenko beams. J. Sound Vib. 1997;207:47–59.10.1006/jsvi.1997.1110
  • Nethercot DA, Salter PR, Malik AS. Design of members subject to combined bending and torsion. Berkshire: The Steel Construction Institute; 1989.
  • Liviu L, Ohseop S. Thin-walled composite beams. Dordrecht: Springer; 2006.
  • Jang I, Lee U. Spectral element analysis of the axial-bending-shear coupled vibrations of composite Timoshenko beams. J. Compos. Mater. 2012;46:2811–2828.10.1177/0021998311432946
  • Lee U, Jang I. Spectral element model for axially loaded bending–shear–torsion coupled composite Timoshenko beams. Compos. Struct. 2010;92:2860–2870.
  • Bathe KJ. Finite element procedures. Upper Saddle River, NJ: Prentice Hall; 1996.
  • Lian YP, Zhang X, Liu Y. An adaptive finite element material point method and its application in extreme deformation problems. Comput. Method Appl. Mech. Eng. 2012;241–244:275–285.10.1016/j.cma.2012.06.015
  • Palma R, Pérez-Aparicio JL, Taylor RL. Non-linear finite element formulation applied to thermoelectric materials under hyperbolic heat conduction model. Comput. Method Appl. Mech. Eng. 2012;213–216:93–103.10.1016/j.cma.2011.11.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.